Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A6B5_mP22_11_6e_5e-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/H63U
or https://aflow.org/p/A6B5_mP22_11_6e_5e-001
or PDF Version

Pt$_{6}$Si$_{5}$ Structure: A6B5_mP22_11_6e_5e-001

Picture of Structure; Click for Big Picture
Prototype Pt$_{6}$Si$_{5}$
AFLOW prototype label A6B5_mP22_11_6e_5e-001
ICSD 43283
Pearson symbol mP22
Space group number 11
Space group symbol $P2_1/m$
AFLOW prototype command aflow --proto=A6B5_mP22_11_6e_5e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}$

  • Our rendition of this structure swaps the x- and z-axis used by (Gohle, 1964).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Pt I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Pt I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Pt II
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Pt II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Pt III
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Pt III
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Pt IV
$\mathbf{B_{8}}$ = $- x_{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Pt IV
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Pt V
$\mathbf{B_{10}}$ = $- x_{5} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Pt V
$\mathbf{B_{11}}$ = $x_{6} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Pt VI
$\mathbf{B_{12}}$ = $- x_{6} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Pt VI
$\mathbf{B_{13}}$ = $x_{7} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Si I
$\mathbf{B_{14}}$ = $- x_{7} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Si I
$\mathbf{B_{15}}$ = $x_{8} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Si II
$\mathbf{B_{16}}$ = $- x_{8} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Si II
$\mathbf{B_{17}}$ = $x_{9} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Si III
$\mathbf{B_{18}}$ = $- x_{9} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Si III
$\mathbf{B_{19}}$ = $x_{10} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Si IV
$\mathbf{B_{20}}$ = $- x_{10} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Si IV
$\mathbf{B_{21}}$ = $x_{11} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Si V
$\mathbf{B_{22}}$ = $- x_{11} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (2e) Si V

References

Found in

  • G. Majni, M. Costato, F. anini, and G. Celotti, The film compounds in planar Pt-Si reaction, J. Phys. Chem. Solids 46, 631–641 (1985), doi:10.1016/0022-3697(85)90227-6. (Majni, 1985) erroneously identify R. Gohle as W. Gold (see Ref. 12).

Prototype Generator

aflow --proto=A6B5_mP22_11_6e_5e --params=$a,b/a,c/a,\beta,x_{1},z_{1},x_{2},z_{2},x_{3},z_{3},x_{4},z_{4},x_{5},z_{5},x_{6},z_{6},x_{7},z_{7},x_{8},z_{8},x_{9},z_{9},x_{10},z_{10},x_{11},z_{11}$

Species:

Running:

Output: