AFLOW Prototype: A5B_tI24_140_cl_a-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/528Z
or
https://aflow.org/p/A5B_tI24_140_cl_a-001
or
PDF Version
Prototype | Ga$_{5}$Pd |
AFLOW prototype label | A5B_tI24_140_cl_a-001 |
ICSD | 103908 |
Pearson symbol | tI24 |
Space group number | 140 |
Space group symbol | $I4/mcm$ |
AFLOW prototype command |
aflow --proto=A5B_tI24_140_cl_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak z_{3}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4a) | Pd I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ | = | $\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4a) | Pd I |
$\mathbf{B_{3}}$ | = | $0$ | = | $0$ | (4c) | Ga I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4c) | Ga I |
$\mathbf{B_{5}}$ | = | $\left(x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(2 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16l) | Ga II |
$\mathbf{B_{6}}$ | = | $\left(- x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16l) | Ga II |
$\mathbf{B_{7}}$ | = | $\left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16l) | Ga II |
$\mathbf{B_{8}}$ | = | $- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16l) | Ga II |
$\mathbf{B_{9}}$ | = | $\left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (16l) | Ga II |
$\mathbf{B_{10}}$ | = | $- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (16l) | Ga II |
$\mathbf{B_{11}}$ | = | $\left(x_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(2 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (16l) | Ga II |
$\mathbf{B_{12}}$ | = | $- \left(x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (16l) | Ga II |