Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5B_tI24_140_cl_a-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/528Z
or https://aflow.org/p/A5B_tI24_140_cl_a-001
or PDF Version

PdGa$_{5}$ Structure: A5B_tI24_140_cl_a-001

Picture of Structure; Click for Big Picture
Prototype Ga$_{5}$Pd
AFLOW prototype label A5B_tI24_140_cl_a-001
ICSD 103908
Pearson symbol tI24
Space group number 140
Space group symbol $I4/mcm$
AFLOW prototype command aflow --proto=A5B_tI24_140_cl_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak z_{3}$

  • There is no ICSD entry for (Grin, 1997). It is a refinement of the work of (Schubert, 1959), and we list that ICSD entry.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (4a) Pd I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (4a) Pd I
$\mathbf{B_{3}}$ = $0$ = $0$ (4c) Ga I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (4c) Ga I
$\mathbf{B_{5}}$ = $\left(x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(2 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (16l) Ga II
$\mathbf{B_{6}}$ = $\left(- x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (16l) Ga II
$\mathbf{B_{7}}$ = $\left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (16l) Ga II
$\mathbf{B_{8}}$ = $- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (16l) Ga II
$\mathbf{B_{9}}$ = $\left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (16l) Ga II
$\mathbf{B_{10}}$ = $- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (16l) Ga II
$\mathbf{B_{11}}$ = $\left(x_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(2 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (16l) Ga II
$\mathbf{B_{12}}$ = $- \left(x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (16l) Ga II

References

  • Y. Grin, K. Peters, and H. G. von Schnering, Refinement of the crystal structure of palladium pentagallide, PdGa$_{5}$, Z. Kristallogr. 212, 6 (1997), doi:10.1524/zkri.1997.212.s1.6.
  • K. Schubert, H. Lukas, H. Meißner, and S. Bhan, Zum Aufbau der Systeme Kobalt-Gallium, Palladium-Gallium, Palladium-Zinn und verwandter Legierungen, Z. Metallkd. 50, 534–540 (1959).

Prototype Generator

aflow --proto=A5B_tI24_140_cl_a --params=$a,c/a,x_{3},z_{3}$

Species:

Running:

Output: