Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5B6C18_tI232_142_bg_dg_e2f3g-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/21TS
or https://aflow.org/p/A5B6C18_tI232_142_bg_dg_e2f3g-001
or PDF Version

Er$_{5}$Rh$_{6}$Sn$_{18}$ Structure: A5B6C18_tI232_142_bg_dg_e2f3g-001

Picture of Structure; Click for Big Picture
Prototype Er$_{5}$Rh$_{6}$Sn$_{18}$
AFLOW prototype label A5B6C18_tI232_142_bg_dg_e2f3g-001
ICSD 103302
Pearson symbol tI232
Space group number 142
Space group symbol $I4_1/acd$
AFLOW prototype command aflow --proto=A5B6C18_tI232_142_bg_dg_e2f3g-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}$

Other compounds with this structure

Lu$_{5}$Rh$_{6}$Sn$_{18}$,  Sc$_{5}$Rh$_{6}$Sn$_{18}$,  Y$_{5}$Rh$_{6}$Sn$_{18}$


  • (Hodeau, 1984) found that the Er-I site is actually a mixture of erbium and tin atoms in a 2:1 ratio. The ICSD entry assumes a 1:2 ratio.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (8b) Er I
$\mathbf{B_{2}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ (8b) Er I
$\mathbf{B_{3}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (8b) Er I
$\mathbf{B_{4}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ (8b) Er I
$\mathbf{B_{5}}$ = $\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (16d) Rh I
$\mathbf{B_{6}}$ = $z_{2} \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16d) Rh I
$\mathbf{B_{7}}$ = $- \left(z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (16d) Rh I
$\mathbf{B_{8}}$ = $- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16d) Rh I
$\mathbf{B_{9}}$ = $- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (16d) Rh I
$\mathbf{B_{10}}$ = $- z_{2} \, \mathbf{a}_{1}- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16d) Rh I
$\mathbf{B_{11}}$ = $\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16d) Rh I
$\mathbf{B_{12}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16d) Rh I
$\mathbf{B_{13}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{14}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{15}}$ = $\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{16}}$ = $- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}$ (16e) Sn I
$\mathbf{B_{17}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{18}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{19}}$ = $- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{20}}$ = $\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (16e) Sn I
$\mathbf{B_{21}}$ = $\left(x_{4} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{22}}$ = $- \left(x_{4} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{23}}$ = $\left(x_{4} + \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{24}}$ = $- \left(x_{4} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{25}}$ = $- \left(x_{4} - \frac{5}{8}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{7}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{26}}$ = $\left(x_{4} + \frac{5}{8}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{7}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{27}}$ = $- \left(x_{4} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{28}}$ = $\left(x_{4} + \frac{7}{8}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ (16f) Sn II
$\mathbf{B_{29}}$ = $\left(x_{5} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Sn III
$\mathbf{B_{30}}$ = $- \left(x_{5} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Sn III
$\mathbf{B_{31}}$ = $\left(x_{5} + \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Sn III
$\mathbf{B_{32}}$ = $- \left(x_{5} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Sn III
$\mathbf{B_{33}}$ = $- \left(x_{5} - \frac{5}{8}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{7}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16f) Sn III
$\mathbf{B_{34}}$ = $\left(x_{5} + \frac{5}{8}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{7}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16f) Sn III
$\mathbf{B_{35}}$ = $- \left(x_{5} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ (16f) Sn III
$\mathbf{B_{36}}$ = $\left(x_{5} + \frac{7}{8}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ (16f) Sn III
$\mathbf{B_{37}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{38}}$ = $\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{39}}$ = $\left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{40}}$ = $- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{41}}$ = $\left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{42}}$ = $- \left(y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{43}}$ = $\left(x_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{44}}$ = $- \left(x_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{45}}$ = $- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{46}}$ = $\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{47}}$ = $- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{48}}$ = $\left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{49}}$ = $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{50}}$ = $\left(y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{51}}$ = $\left(- x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{52}}$ = $\left(x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Er II
$\mathbf{B_{53}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{54}}$ = $\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{55}}$ = $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{56}}$ = $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{57}}$ = $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{58}}$ = $- \left(y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{59}}$ = $\left(x_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{60}}$ = $- \left(x_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{61}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{62}}$ = $\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{63}}$ = $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{64}}$ = $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{65}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{66}}$ = $\left(y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{67}}$ = $\left(- x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{68}}$ = $\left(x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Rh II
$\mathbf{B_{69}}$ = $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{70}}$ = $\left(- y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{71}}$ = $\left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(- y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{72}}$ = $- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{73}}$ = $\left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{74}}$ = $- \left(y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{75}}$ = $\left(x_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{76}}$ = $- \left(x_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{77}}$ = $- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{78}}$ = $\left(y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{79}}$ = $- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{80}}$ = $\left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{81}}$ = $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{82}}$ = $\left(y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{83}}$ = $\left(- x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{84}}$ = $\left(x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn IV
$\mathbf{B_{85}}$ = $\left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{86}}$ = $\left(- y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{87}}$ = $\left(x_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(- y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{88}}$ = $- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{1}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{89}}$ = $\left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{90}}$ = $- \left(y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{91}}$ = $\left(x_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{92}}$ = $- \left(x_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{93}}$ = $- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{94}}$ = $\left(y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{95}}$ = $- \left(x_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{96}}$ = $\left(x_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{97}}$ = $- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{98}}$ = $\left(y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{99}}$ = $\left(- x_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{100}}$ = $\left(x_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn V
$\mathbf{B_{101}}$ = $\left(y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{102}}$ = $\left(- y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{103}}$ = $\left(x_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(- y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{104}}$ = $- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{1}+\left(y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{105}}$ = $\left(y_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{106}}$ = $- \left(y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{107}}$ = $\left(x_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{108}}$ = $- \left(x_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{109}}$ = $- \left(y_{10} + z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{110}}$ = $\left(y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{111}}$ = $- \left(x_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{112}}$ = $\left(x_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{113}}$ = $- \left(y_{10} - z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{114}}$ = $\left(y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{115}}$ = $\left(- x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn VI
$\mathbf{B_{116}}$ = $\left(x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Sn VI

References

  • J. L. Hodeau, M. Marezio, and J. P. Remeika, The structure of [Er(1)$_{1-x}$,Sn(1)$_{x}$]Er(2)$_{4}$Rh$_{6}$Sn(2)$_{4}$Sn(3)$_{12}$Sn(4)$_{2}$, a ternary reentrant superconductor, Acta Crystallogr. Sect. B 40, 26–38 (1984), doi:10.1107/S0108768184001713.

Found in

  • A. Ślebarski, P. Zajdel, M. M. Maśka, J. Deniszczyk, and M. FijaƂkowski, Superconductivity of Y$_{5}$Rh$_{6}$Sn$_{18}$; Coexistence of the high temperature thermal lattice relaxation process and superconductivity, J. Alloys Compd. 819, 152959 (2020), doi:10.1016/j.jallcom.2019.152959.

Prototype Generator

aflow --proto=A5B6C18_tI232_142_bg_dg_e2f3g --params=$a,c/a,z_{2},x_{3},x_{4},x_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10}$

Species:

Running:

Output: