AFLOW Prototype: A4B_tI20_141_h_a-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/NG21
or
https://aflow.org/p/A4B_tI20_141_h_a-001
or
PDF Version
Prototype | Cl$_{4}$Th |
AFLOW prototype label | A4B_tI20_141_h_a-001 |
ICSD | 26197 |
Pearson symbol | tI20 |
Space group number | 141 |
Space group symbol | $I4_1/amd$ |
AFLOW prototype command |
aflow --proto=A4B_tI20_141_h_a-001
--params=$a, \allowbreak c/a, \allowbreak y_{2}, \allowbreak z_{2}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{7}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (4a) | Th I |
$\mathbf{B_{2}}$ | = | $\frac{1}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (4a) | Th I |
$\mathbf{B_{3}}$ | = | $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (16h) | Cl I |
$\mathbf{B_{4}}$ | = | $\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (16h) | Cl I |
$\mathbf{B_{5}}$ | = | $z_{2} \, \mathbf{a}_{1}+\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ | = | $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | Cl I |
$\mathbf{B_{6}}$ | = | $z_{2} \, \mathbf{a}_{1}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | Cl I |
$\mathbf{B_{7}}$ | = | $\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (16h) | Cl I |
$\mathbf{B_{8}}$ | = | $- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (16h) | Cl I |
$\mathbf{B_{9}}$ | = | $- z_{2} \, \mathbf{a}_{1}+\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ | = | $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | Cl I |
$\mathbf{B_{10}}$ | = | $- z_{2} \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | Cl I |