AFLOW Prototype: A4BC4D_tP10_123_gh_a_i_d-001
This structure originally had the label A4BC4D_tP10_123_gh_a_i_d. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/X7PG
or
https://aflow.org/p/A4BC4D_tP10_123_gh_a_i_d-001
or
PDF Version
Prototype | As$_{4}$CaFe$_{4}$Rb |
AFLOW prototype label | A4BC4D_tP10_123_gh_a_i_d-001 |
ICSD | 252344 |
Pearson symbol | tP10 |
Space group number | 123 |
Space group symbol | $P4/mmm$ |
AFLOW prototype command |
aflow --proto=A4BC4D_tP10_123_gh_a_i_d-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}$ |
BaCsFe$_{4}$As$_{4}$, BaKFe$_{4}$As$_{4}$, BaRbFe$_{4}$As$_{4}$, CaCsFe$_{4}$As$_{4}$, CaKFe$_{4}$As$_{4}$, EuCsFe$_{4}$As$_{4}$, EuKFe$_{4}$As$_{4}$, EuRbFe$_{4}$As$_{4}$, SrCsFe$_{4}$As$_{4}$, SrKFe$_{4}$As$_{4}$, SrRbFe$_{4}$As$_{4}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Ca I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1d) | Rb I |
$\mathbf{B_{3}}$ | = | $z_{3} \, \mathbf{a}_{3}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (2g) | As I |
$\mathbf{B_{4}}$ | = | $- z_{3} \, \mathbf{a}_{3}$ | = | $- c z_{3} \,\mathbf{\hat{z}}$ | (2g) | As I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (2h) | As II |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (2h) | As II |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (4i) | Fe I |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ | (4i) | Fe I |
$\mathbf{B_{9}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (4i) | Fe I |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{5} \,\mathbf{\hat{z}}$ | (4i) | Fe I |