AFLOW Prototype: A3B_tI64_142_def_d-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/Q6FW
or
https://aflow.org/p/A3B_tI64_142_def_d-001
or
PDF Version
Prototype | Au$_{3}$Zn |
AFLOW prototype label | A3B_tI64_142_def_d-001 |
ICSD | 58628 |
Pearson symbol | tI64 |
Space group number | 142 |
Space group symbol | $I4_1/acd$ |
AFLOW prototype command |
aflow --proto=A3B_tI64_142_def_d-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak x_{4}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ | (16d) | Au I |
$\mathbf{B_{2}}$ | = | $z_{1} \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16d) | Au I |
$\mathbf{B_{3}}$ | = | $- \left(z_{1} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ | (16d) | Au I |
$\mathbf{B_{4}}$ | = | $- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{1} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16d) | Au I |
$\mathbf{B_{5}}$ | = | $- \left(z_{1} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ | (16d) | Au I |
$\mathbf{B_{6}}$ | = | $- z_{1} \, \mathbf{a}_{1}- \left(z_{1} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16d) | Au I |
$\mathbf{B_{7}}$ | = | $\left(z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16d) | Au I |
$\mathbf{B_{8}}$ | = | $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16d) | Au I |
$\mathbf{B_{9}}$ | = | $\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (16d) | Zn I |
$\mathbf{B_{10}}$ | = | $z_{2} \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16d) | Zn I |
$\mathbf{B_{11}}$ | = | $- \left(z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (16d) | Zn I |
$\mathbf{B_{12}}$ | = | $- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16d) | Zn I |
$\mathbf{B_{13}}$ | = | $- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (16d) | Zn I |
$\mathbf{B_{14}}$ | = | $- z_{2} \, \mathbf{a}_{1}- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16d) | Zn I |
$\mathbf{B_{15}}$ | = | $\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16d) | Zn I |
$\mathbf{B_{16}}$ | = | $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16d) | Zn I |
$\mathbf{B_{17}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16e) | Au II |
$\mathbf{B_{18}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16e) | Au II |
$\mathbf{B_{19}}$ | = | $\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (16e) | Au II |
$\mathbf{B_{20}}$ | = | $- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}$ | (16e) | Au II |
$\mathbf{B_{21}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (16e) | Au II |
$\mathbf{B_{22}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16e) | Au II |
$\mathbf{B_{23}}$ | = | $- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (16e) | Au II |
$\mathbf{B_{24}}$ | = | $\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (16e) | Au II |
$\mathbf{B_{25}}$ | = | $\left(x_{4} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | Au III |
$\mathbf{B_{26}}$ | = | $- \left(x_{4} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | Au III |
$\mathbf{B_{27}}$ | = | $\left(x_{4} + \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | Au III |
$\mathbf{B_{28}}$ | = | $- \left(x_{4} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | Au III |
$\mathbf{B_{29}}$ | = | $- \left(x_{4} - \frac{5}{8}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{7}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16f) | Au III |
$\mathbf{B_{30}}$ | = | $\left(x_{4} + \frac{5}{8}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{7}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16f) | Au III |
$\mathbf{B_{31}}$ | = | $- \left(x_{4} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ | (16f) | Au III |
$\mathbf{B_{32}}$ | = | $\left(x_{4} + \frac{7}{8}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ | (16f) | Au III |