Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3BC3D_tP64_106_3c_c_3c_c-001

This structure originally had the label A3BC3D_tP64_106_3c_c_3c_c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/SP8Q
or https://aflow.org/p/A3BC3D_tP64_106_3c_c_3c_c-001
or PDF Version

NaZn[OH]$_{3}$ Structure: A3BC3D_tP64_106_3c_c_3c_c-001

Picture of Structure; Click for Big Picture
Prototype H$_{3}$NaO$_{3}$Zn
AFLOW prototype label A3BC3D_tP64_106_3c_c_3c_c-001
ICSD 66975
Pearson symbol tP64
Space group number 106
Space group symbol $P4_2bc$
AFLOW prototype command aflow --proto=A3BC3D_tP64_106_3c_c_3c_c-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}$

  • Space group $P4_{2}bc$ #106 allows an arbitary placement of the origin of the $z$-axis. Here we use this freedom to set $z_{8} = 0$ for the zinc atoms.
  • The O-II - H-II distance is unreasonably small (0.45Å). It is likely that there is an error in the coordinates for one of these atoms.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (8c) H I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (8c) H I
$\mathbf{B_{3}}$ = $- y_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) H I
$\mathbf{B_{4}}$ = $y_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) H I
$\mathbf{B_{5}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (8c) H I
$\mathbf{B_{6}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (8c) H I
$\mathbf{B_{7}}$ = $- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) H I
$\mathbf{B_{8}}$ = $\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) H I
$\mathbf{B_{9}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8c) H II
$\mathbf{B_{10}}$ = $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8c) H II
$\mathbf{B_{11}}$ = $- y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) H II
$\mathbf{B_{12}}$ = $y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) H II
$\mathbf{B_{13}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8c) H II
$\mathbf{B_{14}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8c) H II
$\mathbf{B_{15}}$ = $- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) H II
$\mathbf{B_{16}}$ = $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) H II
$\mathbf{B_{17}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8c) H III
$\mathbf{B_{18}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8c) H III
$\mathbf{B_{19}}$ = $- y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) H III
$\mathbf{B_{20}}$ = $y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) H III
$\mathbf{B_{21}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8c) H III
$\mathbf{B_{22}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8c) H III
$\mathbf{B_{23}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) H III
$\mathbf{B_{24}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) H III
$\mathbf{B_{25}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8c) Na I
$\mathbf{B_{26}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8c) Na I
$\mathbf{B_{27}}$ = $- y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Na I
$\mathbf{B_{28}}$ = $y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Na I
$\mathbf{B_{29}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8c) Na I
$\mathbf{B_{30}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8c) Na I
$\mathbf{B_{31}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Na I
$\mathbf{B_{32}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Na I
$\mathbf{B_{33}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{34}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{35}}$ = $- y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{36}}$ = $y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{37}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{38}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{39}}$ = $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{40}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{41}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{42}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{43}}$ = $- y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{44}}$ = $y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{45}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{46}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{47}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{48}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{49}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8c) O III
$\mathbf{B_{50}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8c) O III
$\mathbf{B_{51}}$ = $- y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O III
$\mathbf{B_{52}}$ = $y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O III
$\mathbf{B_{53}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8c) O III
$\mathbf{B_{54}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8c) O III
$\mathbf{B_{55}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O III
$\mathbf{B_{56}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O III
$\mathbf{B_{57}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8c) Zn I
$\mathbf{B_{58}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8c) Zn I
$\mathbf{B_{59}}$ = $- y_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Zn I
$\mathbf{B_{60}}$ = $y_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Zn I
$\mathbf{B_{61}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8c) Zn I
$\mathbf{B_{62}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8c) Zn I
$\mathbf{B_{63}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Zn I
$\mathbf{B_{64}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Zn I

References

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A3BC3D_tP64_106_3c_c_3c_c --params=$a,c/a,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8}$

Species:

Running:

Output: