AFLOW Prototype: A3BC2_mP24_14_3e_e_2e-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/8M4S
or
https://aflow.org/p/A3BC2_mP24_14_3e_e_2e-001
or
PDF Version
Prototype | O$_{3}$TeTl$_{2}$ |
AFLOW prototype label | A3BC2_mP24_14_3e_e_2e-001 |
ICSD | none |
Pearson symbol | mP24 |
Space group number | 14 |
Space group symbol | $P2_1/c$ |
AFLOW prototype command |
aflow --proto=A3BC2_mP24_14_3e_e_2e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | O I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{1} + c \left(z_{1} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | O I |
$\mathbf{B_{3}}$ | = | $- x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ | = | $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | O I |
$\mathbf{B_{4}}$ | = | $x_{1} \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{1} + c \left(z_{1} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | O I |
$\mathbf{B_{5}}$ | = | $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | O II |
$\mathbf{B_{6}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{2} + c \left(z_{2} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | O II |
$\mathbf{B_{7}}$ | = | $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | O II |
$\mathbf{B_{8}}$ | = | $x_{2} \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c \left(z_{2} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | O II |
$\mathbf{B_{9}}$ | = | $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | O III |
$\mathbf{B_{10}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + c \left(z_{3} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | O III |
$\mathbf{B_{11}}$ | = | $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | O III |
$\mathbf{B_{12}}$ | = | $x_{3} \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c \left(z_{3} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | O III |
$\mathbf{B_{13}}$ | = | $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Te I |
$\mathbf{B_{14}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{4} + c \left(z_{4} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Te I |
$\mathbf{B_{15}}$ | = | $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Te I |
$\mathbf{B_{16}}$ | = | $x_{4} \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c \left(z_{4} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Te I |
$\mathbf{B_{17}}$ | = | $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Tl I |
$\mathbf{B_{18}}$ | = | $- x_{5} \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{5} + c \left(z_{5} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Tl I |
$\mathbf{B_{19}}$ | = | $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Tl I |
$\mathbf{B_{20}}$ | = | $x_{5} \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c \left(z_{5} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Tl I |
$\mathbf{B_{21}}$ | = | $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Tl II |
$\mathbf{B_{22}}$ | = | $- x_{6} \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{6} + c \left(z_{6} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Tl II |
$\mathbf{B_{23}}$ | = | $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Tl II |
$\mathbf{B_{24}}$ | = | $x_{6} \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c \left(z_{6} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Tl II |