AFLOW Prototype: A3B6C_mP20_4_3a_6a_a-001
This structure originally had the label A3B6C_mP20_4_3a_6a_a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/T9UP
or
https://aflow.org/p/A3B6C_mP20_4_3a_6a_a-001
or
PDF Version
Prototype | Ca$_{3}$O$_{6}$U |
AFLOW prototype label | A3B6C_mP20_4_3a_6a_a-001 |
ICSD | 23200 |
Pearson symbol | mP20 |
Space group number | 4 |
Space group symbol | $P2_1$ |
AFLOW prototype command |
aflow --proto=A3B6C_mP20_4_3a_6a_a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}$ |
Sr$_{3}$UO$_{6}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Ca I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ | = | $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Ca I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Ca II |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Ca II |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Ca III |
$\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | Ca III |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O I |
$\mathbf{B_{8}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O I |
$\mathbf{B_{9}}$ | = | $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O II |
$\mathbf{B_{10}}$ | = | $- x_{5} \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O II |
$\mathbf{B_{11}}$ | = | $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O III |
$\mathbf{B_{12}}$ | = | $- x_{6} \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O III |
$\mathbf{B_{13}}$ | = | $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O IV |
$\mathbf{B_{14}}$ | = | $- x_{7} \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O IV |
$\mathbf{B_{15}}$ | = | $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O V |
$\mathbf{B_{16}}$ | = | $- x_{8} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O V |
$\mathbf{B_{17}}$ | = | $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VI |
$\mathbf{B_{18}}$ | = | $- x_{9} \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VI |
$\mathbf{B_{19}}$ | = | $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | U I |
$\mathbf{B_{20}}$ | = | $- x_{10} \, \mathbf{a}_{1}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | U I |