Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B5_tI32_140_ah_bk-001

This structure originally had the label A3B5_tI32_140_ah_bk. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/4K4U
or https://aflow.org/p/A3B5_tI32_140_ah_bk-001
or PDF Version

W$_{5}$Si$_{3}$ ($D8_{m}$) Structure: A3B5_tI32_140_ah_bk-001

Picture of Structure; Click for Big Picture
Prototype Si$_{3}$W$_{5}$
AFLOW prototype label A3B5_tI32_140_ah_bk-001
Strukturbericht designation $D8_{m}$
ICSD 73331
Pearson symbol tI32
Space group number 140
Space group symbol $I4/mcm$
AFLOW prototype command aflow --proto=A3B5_tI32_140_ah_bk-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{4}$

Other compounds with this structure

Cr$_{5}$Ge$_{3}$,  Cr$_{5}$Si$_{3}$,  Mo$_{5}$Si$_{3}$,  Nb$_{5}$Si$_{3}$,  Ta$_{5}$Si$_{3}$,  Ti$_{5}$Ga$_{3}$,  V$_{5}$Si$_{3}$,  Ti$_{3}$Sb,  Hf$_{5}$Co$_{1-x}$Sb$_{2+x}$,  Hf$_{5}$Cr$_{1-x}$Sb$_{2+x}$,  Hf$_{5}$Cu$_{1-x}$Sb$_{2+x}$,  Hf$_{5}$Fe$_{1-x}$Sb$_{2+x}$,  Hf$_{5}$Ni$_{1-x}$Sb$_{2+x}$,  Hf$_{5}$Pd$_{1-x}$Sb$_{2+x}$,  Hf$_{5}$Rh$_{1-x}$Sb$_{2+x}$,  Hf$_{5}$Ru$_{1-x}$Sb$_{2+x}$,  Hf$_{5}$V$_{1-x}$Sb$_{2+x}$,  Zr$_{5}$Co$_{0.5}$Sb$_{2.5}$,  Zr$_{5}$Cr$_{1-x}$Bi$_{2+x}$,  Zr$_{5}$Cr$_{1-x}$Sb$_{2+x}$,  Zr$_{5}$Fe$_{0.5}$Sb$_{2.5}$,  Zr$_{5}$Mn$_{1-x}$Bi$_{2+x}$,  Zr$_{5}$Mn$_{1-x}$Sb$_{2+x}$,  Zr$_{5}$Ni$_{0.5}$Sb$_{2.5}$,  Zr$_{5}$Rh$_{0.5}$Sb$_{2.5}$,  Zr$_{5}$Ru$_{0.5}$Sb$_{2.5}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (4a) Si I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (4a) Si I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4b) W I
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4b) W I
$\mathbf{B_{5}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(2 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8h) Si II
$\mathbf{B_{6}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8h) Si II
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (8h) Si II
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ (8h) Si II
$\mathbf{B_{9}}$ = $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (16k) W II
$\mathbf{B_{10}}$ = $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (16k) W II
$\mathbf{B_{11}}$ = $x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (16k) W II
$\mathbf{B_{12}}$ = $- x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (16k) W II
$\mathbf{B_{13}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (16k) W II
$\mathbf{B_{14}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (16k) W II
$\mathbf{B_{15}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (16k) W II
$\mathbf{B_{16}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (16k) W II

References

Found in

  • W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 4 (Pergamon Press, Oxford, London, Edinburgh, New York, Paris, Frankfort, 1958), 1964 reprint with corrections edn.

Prototype Generator

aflow --proto=A3B5_tI32_140_ah_bk --params=$a,c/a,x_{3},x_{4},y_{4}$

Species:

Running:

Output: