AFLOW Prototype: A3B5_tI32_140_ah_bk-001
This structure originally had the label A3B5_tI32_140_ah_bk. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/4K4U
or
https://aflow.org/p/A3B5_tI32_140_ah_bk-001
or
PDF Version
Prototype | Si$_{3}$W$_{5}$ |
AFLOW prototype label | A3B5_tI32_140_ah_bk-001 |
Strukturbericht designation | $D8_{m}$ |
ICSD | 73331 |
Pearson symbol | tI32 |
Space group number | 140 |
Space group symbol | $I4/mcm$ |
AFLOW prototype command |
aflow --proto=A3B5_tI32_140_ah_bk-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{4}$ |
Cr$_{5}$Ge$_{3}$, Cr$_{5}$Si$_{3}$, Mo$_{5}$Si$_{3}$, Nb$_{5}$Si$_{3}$, Ta$_{5}$Si$_{3}$, Ti$_{5}$Ga$_{3}$, V$_{5}$Si$_{3}$, Ti$_{3}$Sb, Hf$_{5}$Co$_{1-x}$Sb$_{2+x}$, Hf$_{5}$Cr$_{1-x}$Sb$_{2+x}$, Hf$_{5}$Cu$_{1-x}$Sb$_{2+x}$, Hf$_{5}$Fe$_{1-x}$Sb$_{2+x}$, Hf$_{5}$Ni$_{1-x}$Sb$_{2+x}$, Hf$_{5}$Pd$_{1-x}$Sb$_{2+x}$, Hf$_{5}$Rh$_{1-x}$Sb$_{2+x}$, Hf$_{5}$Ru$_{1-x}$Sb$_{2+x}$, Hf$_{5}$V$_{1-x}$Sb$_{2+x}$, Zr$_{5}$Co$_{0.5}$Sb$_{2.5}$, Zr$_{5}$Cr$_{1-x}$Bi$_{2+x}$, Zr$_{5}$Cr$_{1-x}$Sb$_{2+x}$, Zr$_{5}$Fe$_{0.5}$Sb$_{2.5}$, Zr$_{5}$Mn$_{1-x}$Bi$_{2+x}$, Zr$_{5}$Mn$_{1-x}$Sb$_{2+x}$, Zr$_{5}$Ni$_{0.5}$Sb$_{2.5}$, Zr$_{5}$Rh$_{0.5}$Sb$_{2.5}$, Zr$_{5}$Ru$_{0.5}$Sb$_{2.5}$
T1 phase.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4a) | Si I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ | = | $\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4a) | Si I |
$\mathbf{B_{3}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4b) | W I |
$\mathbf{B_{4}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4b) | W I |
$\mathbf{B_{5}}$ | = | $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(2 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ | (8h) | Si II |
$\mathbf{B_{6}}$ | = | $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ | (8h) | Si II |
$\mathbf{B_{7}}$ | = | $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ | (8h) | Si II |
$\mathbf{B_{8}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ | (8h) | Si II |
$\mathbf{B_{9}}$ | = | $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ | (16k) | W II |
$\mathbf{B_{10}}$ | = | $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ | (16k) | W II |
$\mathbf{B_{11}}$ | = | $x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ | (16k) | W II |
$\mathbf{B_{12}}$ | = | $- x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ | (16k) | W II |
$\mathbf{B_{13}}$ | = | $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (16k) | W II |
$\mathbf{B_{14}}$ | = | $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (16k) | W II |
$\mathbf{B_{15}}$ | = | $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (16k) | W II |
$\mathbf{B_{16}}$ | = | $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (16k) | W II |