AFLOW Prototype: A3B11C_tP15_123_ag_ch2i_b-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/7DQQ
or
https://aflow.org/p/A3B11C_tP15_123_ag_ch2i_b-001
or
PDF Version
Prototype | Ce$_{3}$In$_{11}$Pd |
AFLOW prototype label | A3B11C_tP15_123_ag_ch2i_b-001 |
ICSD | 192619 |
Pearson symbol | tP15 |
Space group number | 123 |
Space group symbol | $P4/mmm$ |
AFLOW prototype command |
aflow --proto=A3B11C_tP15_123_ag_ch2i_b-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}$ |
Ce$_{3}$PtIn$_{11}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Ce I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1b) | Pd I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (1c) | In I |
$\mathbf{B_{4}}$ | = | $z_{4} \, \mathbf{a}_{3}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (2g) | Ce II |
$\mathbf{B_{5}}$ | = | $- z_{4} \, \mathbf{a}_{3}$ | = | $- c z_{4} \,\mathbf{\hat{z}}$ | (2g) | Ce II |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (2h) | In II |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (2h) | In II |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (4i) | In III |
$\mathbf{B_{9}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ | (4i) | In III |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (4i) | In III |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{6} \,\mathbf{\hat{z}}$ | (4i) | In III |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (4i) | In IV |
$\mathbf{B_{13}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{7} \,\mathbf{\hat{z}}$ | (4i) | In IV |
$\mathbf{B_{14}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (4i) | In IV |
$\mathbf{B_{15}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{7} \,\mathbf{\hat{z}}$ | (4i) | In IV |