Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A31B9_tP40_83_ae3j4k_cjk-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/FCR5
or https://aflow.org/p/A31B9_tP40_83_ae3j4k_cjk-001
or PDF Version

Au$_{31}$Mn$_{9}$ Structure: A31B9_tP40_83_ae3j4k_cjk-001

Picture of Structure; Click for Big Picture
Prototype Au$_{31}$Mn$_{9}$
AFLOW prototype label A31B9_tP40_83_ae3j4k_cjk-001
ICSD 58552
Pearson symbol tP40
Space group number 83
Space group symbol $P4/m$
AFLOW prototype command aflow --proto=A31B9_tP40_83_ae3j4k_cjk-001
--params=$a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak x_{12}, \allowbreak y_{12}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Au I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (1c) Mn I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (2e) Au II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (2e) Au II
$\mathbf{B_{5}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (4j) Au III
$\mathbf{B_{6}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (4j) Au III
$\mathbf{B_{7}}$ = $- y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (4j) Au III
$\mathbf{B_{8}}$ = $y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (4j) Au III
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}$ (4j) Au IV
$\mathbf{B_{10}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}$ (4j) Au IV
$\mathbf{B_{11}}$ = $- y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}$ = $- a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}$ (4j) Au IV
$\mathbf{B_{12}}$ = $y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ = $a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}$ (4j) Au IV
$\mathbf{B_{13}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}$ (4j) Au V
$\mathbf{B_{14}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}$ (4j) Au V
$\mathbf{B_{15}}$ = $- y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}$ = $- a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}$ (4j) Au V
$\mathbf{B_{16}}$ = $y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}$ = $a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}$ (4j) Au V
$\mathbf{B_{17}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}$ (4j) Mn II
$\mathbf{B_{18}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}$ (4j) Mn II
$\mathbf{B_{19}}$ = $- y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}$ = $- a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}$ (4j) Mn II
$\mathbf{B_{20}}$ = $y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}$ = $a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}$ (4j) Mn II
$\mathbf{B_{21}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au VI
$\mathbf{B_{22}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au VI
$\mathbf{B_{23}}$ = $- y_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au VI
$\mathbf{B_{24}}$ = $y_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au VI
$\mathbf{B_{25}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au VII
$\mathbf{B_{26}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au VII
$\mathbf{B_{27}}$ = $- y_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au VII
$\mathbf{B_{28}}$ = $y_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au VII
$\mathbf{B_{29}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au VIII
$\mathbf{B_{30}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au VIII
$\mathbf{B_{31}}$ = $- y_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au VIII
$\mathbf{B_{32}}$ = $y_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au VIII
$\mathbf{B_{33}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au IX
$\mathbf{B_{34}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au IX
$\mathbf{B_{35}}$ = $- y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au IX
$\mathbf{B_{36}}$ = $y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Au IX
$\mathbf{B_{37}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Mn III
$\mathbf{B_{38}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Mn III
$\mathbf{B_{39}}$ = $- y_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Mn III
$\mathbf{B_{40}}$ = $y_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Mn III

References

  • K. Hiraga, D. Shindo, M. Hirabayashi, O. Terasaki, and D. Watanabe, A study of the ordered structures of the Au-Mn system by high-voltage-high-resolution electron microscopy. I. Two-dimensional antiphase structure of Au$_{31}$Mn$_{9}$ based on the Au$_{4}$Mn structure, Acta Crystallogr. Sect. B 36, 2550–2554 (1980), doi:10.1107/S0567740880009417.

Found in


Prototype Generator

aflow --proto=A31B9_tP40_83_ae3j4k_cjk --params=$a,c/a,x_{4},y_{4},x_{5},y_{5},x_{6},y_{6},x_{7},y_{7},x_{8},y_{8},x_{9},y_{9},x_{10},y_{10},x_{11},y_{11},x_{12},y_{12}$

Species:

Running:

Output: