Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_tI24_87_2h_h-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/MHEM
or https://aflow.org/p/A2B_tI24_87_2h_h-001
or PDF Version

High Temperature Metastable VO$_{2}$ Structure: A2B_tI24_87_2h_h-001

Picture of Structure; Click for Big Picture
Prototype O$_{2}$V
AFLOW prototype label A2B_tI24_87_2h_h-001
ICSD 51214
Pearson symbol tI24
Space group number 87
Space group symbol $I4/m$
AFLOW prototype command aflow --proto=A2B_tI24_87_2h_h-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak x_{3}, \allowbreak y_{3}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $y_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+\left(x_{1} + y_{1}\right) \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}$ (8h) O I
$\mathbf{B_{2}}$ = $- y_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- \left(x_{1} + y_{1}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}$ (8h) O I
$\mathbf{B_{3}}$ = $x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\left(x_{1} - y_{1}\right) \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}$ (8h) O I
$\mathbf{B_{4}}$ = $- x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}- \left(x_{1} - y_{1}\right) \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}$ (8h) O I
$\mathbf{B_{5}}$ = $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}$ (8h) O II
$\mathbf{B_{6}}$ = $- y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}$ (8h) O II
$\mathbf{B_{7}}$ = $x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ (8h) O II
$\mathbf{B_{8}}$ = $- x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ (8h) O II
$\mathbf{B_{9}}$ = $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ (8h) V I
$\mathbf{B_{10}}$ = $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ (8h) V I
$\mathbf{B_{11}}$ = $x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (8h) V I
$\mathbf{B_{12}}$ = $- x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ (8h) V I

References

  • Y. Oka, S. Sato, T. Yao, and N. Yamamoto, Crystal Structures and Transition Mechanism of VO$_{2}$ (A), J. Solid State Chem. 141, 594–598 (1998), doi:10.1006/jssc.1998.8025.
  • P. Villars, H. Okamoto, and K. Cenzual, eds., ASM Alloy Phase Diagram Database (ASM International, 2018), chap. Oxygen-Vanadium Binary Phase Diagram (1990 Wriedt H.A.). Copyright © 2006-2018 ASM International.

Prototype Generator

aflow --proto=A2B_tI24_87_2h_h --params=$a,c/a,x_{1},y_{1},x_{2},y_{2},x_{3},y_{3}$

Species:

Running:

Output: