AFLOW Prototype: A2B_tI24_87_2h_h-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/MHEM
or
https://aflow.org/p/A2B_tI24_87_2h_h-001
or
PDF Version
Prototype | O$_{2}$V |
AFLOW prototype label | A2B_tI24_87_2h_h-001 |
ICSD | 51214 |
Pearson symbol | tI24 |
Space group number | 87 |
Space group symbol | $I4/m$ |
AFLOW prototype command |
aflow --proto=A2B_tI24_87_2h_h-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak x_{3}, \allowbreak y_{3}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $y_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+\left(x_{1} + y_{1}\right) \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}$ | (8h) | O I |
$\mathbf{B_{2}}$ | = | $- y_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- \left(x_{1} + y_{1}\right) \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}$ | (8h) | O I |
$\mathbf{B_{3}}$ | = | $x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\left(x_{1} - y_{1}\right) \, \mathbf{a}_{3}$ | = | $- a y_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}$ | (8h) | O I |
$\mathbf{B_{4}}$ | = | $- x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}- \left(x_{1} - y_{1}\right) \, \mathbf{a}_{3}$ | = | $a y_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}$ | (8h) | O I |
$\mathbf{B_{5}}$ | = | $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}$ | (8h) | O II |
$\mathbf{B_{6}}$ | = | $- y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}$ | (8h) | O II |
$\mathbf{B_{7}}$ | = | $x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ | (8h) | O II |
$\mathbf{B_{8}}$ | = | $- x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ | (8h) | O II |
$\mathbf{B_{9}}$ | = | $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ | (8h) | V I |
$\mathbf{B_{10}}$ | = | $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ | (8h) | V I |
$\mathbf{B_{11}}$ | = | $x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ | (8h) | V I |
$\mathbf{B_{12}}$ | = | $- x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ | (8h) | V I |