Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_tI12_141_e_a-001

This structure originally had the label A2B_tI12_141_e_a. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/1TUW
or https://aflow.org/p/A2B_tI12_141_e_a-001
or PDF Version

Anatase (TiO$_{2}$, $C5$) Structure: A2B_tI12_141_e_a-001

Picture of Structure; Click for Big Picture
Prototype O$_{2}$Ti
AFLOW prototype label A2B_tI12_141_e_a-001
Strukturbericht designation $C5$
Mineral name anatase
ICSD 63711
Pearson symbol tI12
Space group number 141
Space group symbol $I4_1/amd$
AFLOW prototype command aflow --proto=A2B_tI12_141_e_a-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}$

  • TiO$_{2}$ can also be found as rutile ($C4$) and brookite ($C21$).
  • (Howard, 1991) gives the positions of the atoms in terms of setting 1 of space group $I4_{1}/amd$ #141. Previously, when we translated this to our standard setting 2 we entered an incorrect position for the oxygen z coordinate, giving incorrect Ti-O bond lengths and angles. This has been corrected in the current version of the CIF and the POSCAR.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (4a) Ti I
$\mathbf{B_{2}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (4a) Ti I
$\mathbf{B_{3}}$ = $\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{4}}$ = $z_{2} \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{5}}$ = $- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{6}}$ = $- z_{2} \, \mathbf{a}_{1}- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) O I

References

  • C. J. Howard, T. M. Sabine, and F. Dickson, Structural and thermal parameters for rutile and anatase, Acta Crystallogr. Sect. B 47, 462–468 (1991), doi:10.1107/S010876819100335X.

Prototype Generator

aflow --proto=A2B_tI12_141_e_a --params=$a,c/a,z_{2}$

Species:

Running:

Output: