Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_mC12_5_2c_c-001

This structure originally had the label A2B_mC12_5_2c_c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/0898
or https://aflow.org/p/A2B_mC12_5_2c_c-001
or PDF Version

NbAs$_{2}$ Structure: A2B_mC12_5_2c_c-001

Picture of Structure; Click for Big Picture
Prototype As$_{2}$Nb
AFLOW prototype label A2B_mC12_5_2c_c-001
ICSD 18143
Pearson symbol mC12
Space group number 5
Space group symbol $C2$
AFLOW prototype command aflow --proto=A2B_mC12_5_2c_c-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

Other compounds with this structure

MoAs$_{2}$,  TaAs$_{2}$,  NbSb$_{2}$,  TaSb$_{2}$


  • The zero of the $y$-axis can be chosen arbitrarily in space group $C2$ #5. Here we choose it so that $y_{3} = \frac12$ for the niobium atom.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\left(x_{1} - y_{1}\right) \, \mathbf{a}_{1}+\left(x_{1} + y_{1}\right) \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) As I
$\mathbf{B_{2}}$ = $- \left(x_{1} + y_{1}\right) \, \mathbf{a}_{1}- \left(x_{1} - y_{1}\right) \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) As I
$\mathbf{B_{3}}$ = $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) As II
$\mathbf{B_{4}}$ = $- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) As II
$\mathbf{B_{5}}$ = $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Nb I
$\mathbf{B_{6}}$ = $- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4c) Nb I

References

  • S. Furuseth and A. Kjeeshus, The Crystal Structures of NbAs$_{2}$ and NbSb$_{2}$, Acta Cryst. 18, 320–324 (1965), doi:10.1107/S0365110X65000750.

Prototype Generator

aflow --proto=A2B_mC12_5_2c_c --params=$a,b/a,c/a,\beta,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3}$

Species:

Running:

Output: