Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_mC12_12_2i_i-006

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/0NDQ
or https://aflow.org/p/A2B_mC12_12_2i_i-006
or PDF Version

α-Bi$_{2}$Pd Structure: A2B_mC12_12_2i_i-006

Picture of Structure; Click for Big Picture
Prototype Bi$_{2}$Pd
AFLOW prototype label A2B_mC12_12_2i_i-006
ICSD 42565
Pearson symbol mC12
Space group number 12
Space group symbol $C2/m$
AFLOW prototype command aflow --proto=A2B_mC12_12_2i_i-006
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}$

  • This is the room-temperature structure of Bi$_{2}$Pd. Above 380-390$^\circ$C, depending on the exact composition, this transforms into $\beta$–Bi$_{2}$Pd, which has the tetragonal MoSi$_{2}$ ($C11_{b}$) structure (Villars, 2018).
  • $\alpha$–Ba$_{2}$Pd shares the same AFLOW label, A2B_mC12_12_2i_i, with CaC$_{2}$-III and OsGe$_{2}$. The structures are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Bi I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Bi I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Bi II
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Bi II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Pd I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Pd I

References

  • N. N. Zhuravlev, Structure of Superconductors, X. Thermal, Microscopic, and X-ray Investigation of the Bismuth-Palladium System, Sov. Phys. JETP 5, 1064–1072 (1957).

Found in

  • P. Villars, H. Okamoto, and K. Cenzual, eds., ASM Alloy Phase Diagram Database (ASM International, 2018), chap. Bismuth-Palladium Binary Phase Diagram (1994 Okamoto H.). Copyright © 2006-2018 ASM International.

Prototype Generator

aflow --proto=A2B_mC12_12_2i_i --params=$a,b/a,c/a,\beta,x_{1},z_{1},x_{2},z_{2},x_{3},z_{3}$

Species:

Running:

Output: