Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BCD2_tI12_139_e_a_b_d-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/4LX6
or https://aflow.org/p/A2BCD2_tI12_139_e_a_b_d-001
or PDF Version

LuNi$_{2}$B$_{2}$C Structure: A2BCD2_tI12_139_e_a_b_d-001

Picture of Structure; Click for Big Picture
Prototype B$_{2}$CLuNi$_{2}$
AFLOW prototype label A2BCD2_tI12_139_e_a_b_d-001
ICSD 75609
Pearson symbol tI12
Space group number 139
Space group symbol $I4/mmm$
AFLOW prototype command aflow --proto=A2BCD2_tI12_139_e_a_b_d-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}$

Other compounds with this structure

GdN$_{2}$B$_{2}$C,  LaIr$_{2}$B$_{2}$C,  LaN$_{2}$B$_{2}$C,  LaPt$_{2}$B$_{2}$C,  LaRh$_{2}$B$_{2}$C


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) C I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Lu I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) Nd I
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) Nd I
$\mathbf{B_{5}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $c z_{4} \,\mathbf{\hat{z}}$ (4e) B I
$\mathbf{B_{6}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (4e) B I

References

  • T. Siegrist, R. J. Cava, J. J. Krajewski, and W. F. P. Jr., Crystal chemistry of the series LnT$_{2}$B$_{2}$C (Ln = rare earth, T = transition element), J. Alloys Compd. 216, 135–139 (1994), doi:10.1016/0925-8388(94)91055-3.

Found in

  • M. W. Pohlkamp and W. Jeitschko, Preparation, Properties, and Crystal Structure of Quaternary Silicide Carbides RCr$_{2}$Si$_{2}$C (R = Y, La-Nd, Sm, Gd-Ho), Z. Naturforsch. B 56, 1143–1148 (2001), doi:10.1515/znb-2001-1108.

Prototype Generator

aflow --proto=A2BCD2_tI12_139_e_a_b_d --params=$a,c/a,z_{4}$

Species:

Running:

Output: