AFLOW Prototype: A2BC4_tI14_82_bc_a_g-001
This structure originally had the label A2BC4_tI14_82_bc_a_g. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/S1AD
or
https://aflow.org/p/A2BC4_tI14_82_bc_a_g-001
or
PDF Version
Prototype | Al$_{2}$CdS$_{4}$ |
AFLOW prototype label | A2BC4_tI14_82_bc_a_g-001 |
Strukturbericht designation | $E3$ |
ICSD | 25634 |
Pearson symbol | tI14 |
Space group number | 82 |
Space group symbol | $I\overline{4}$ |
AFLOW prototype command |
aflow --proto=A2BC4_tI14_82_bc_a_g-001
--params=$a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$ |
CdAl$_{2}$Se$_{4}$, CdAl$_{2}$Te$_{4}$, CdGa$_{2}$S$_{4}$, CdGa$_{2}$Se$_{4}$, CdGa$_{2}$Te$_{4}$, CoGa$_{2}$S$_{4}$, FeGa$_{2}$S$_{4}$, HfGa$_{2}$Se$_{4}$, $\beta$-HgAg$_{2}$I$_{4}$, HgAl$_{2}$S$_{4}$, HgAl$_{2}$Se$_{4}$, HgAl$_{2}$Te$_{4}$, HgGa$_{2}$S$_{4}$, HgGa$_{2}$Te$_{4}$, HgIn$_{2}$Se$_{4}$, HgIn$_{2}$Te$_{4}$, ZnGa$_{2}$S$_{4}$, ZnGa$_{2}$Se$_{4}$, ZnGa$_{2}$Te$_{4}$, ZnIn$_{2}$Se$_{4}$, ZnIn$_{2}$Te$_{4}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Cd I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2b) | Al I |
$\mathbf{B_{3}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (2c) | Al II |
$\mathbf{B_{4}}$ | = | $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8g) | S I |
$\mathbf{B_{5}}$ | = | $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8g) | S I |
$\mathbf{B_{6}}$ | = | $- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8g) | S I |
$\mathbf{B_{7}}$ | = | $\left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8g) | S I |