AFLOW Prototype: A2BC2_tP10_129_ac_c_bc-001
This structure originally had the label A2BC2_tP10_129_ac_c_bc. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/H0MM
or
https://aflow.org/p/A2BC2_tP10_129_ac_c_bc-001
or
PDF Version
Prototype | Be$_{2}$CaGe$_{2}$ |
AFLOW prototype label | A2BC2_tP10_129_ac_c_bc-001 |
ICSD | 25337 |
Pearson symbol | tP10 |
Space group number | 129 |
Space group symbol | $P4/nmm$ |
AFLOW prototype command |
aflow --proto=A2BC2_tP10_129_ac_c_bc-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}$ |
BaAu$_{2}$Sn$_{2}$, BaMg$_{2}$Pb$_{2}$, BaPd$_{2}$Sb$_{2}$, BaZn$_{2}$Sn$_{2}$, CeCu$_{2}$Sn$_{2}$, CeRh$_{2}$As$_{2}$, CeRh$_{2}$P$_{2}$, EuAu$_{2}$Al$_{2}$, EuPd$_{2}$Sb$_{2}$, EuPt$_{2}$Ge$_{2}$, HoPt$_{2}$Si$_{2}$, LaCu$_{2}$Sn$_{2}$, LaPt$_{2}$Bi$_{2}$, LaPt$_{2}$Ge$_{2}$, LaPt$_{2}$Si$_{2}$, LaRh$_{2}$As$_{2}$, LaRh$_{2}$P$_{2}$, LiPd$_{2}$Bi$_{2}$, NdRh$_{2}$As$_{2}$, NdRh$_{2}$P$_{2}$, PrRh$_{2}$As$_{2}$, PrRh$_{2}$P$_{2}$, SrAu$_{2}$Sn$_{2}$, SrCu$_{2}$Sn$_{2}$, SrPd$_{2}$Sb$_{2}$, SrPt$_{2}$As$_{2}$, ThIr$_{2}$Si$_{2}$, ThPt$_{2}$Si$_{2}$, UIr$_{2}$Si$_{2}$, UPt$_{2}$Si$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ | (2a) | Be I |
$\mathbf{B_{2}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ | (2a) | Be I |
$\mathbf{B_{3}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2b) | Ge I |
$\mathbf{B_{4}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2b) | Ge I |
$\mathbf{B_{5}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (2c) | Be II |
$\mathbf{B_{6}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (2c) | Be II |
$\mathbf{B_{7}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (2c) | Ca I |
$\mathbf{B_{8}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (2c) | Ca I |
$\mathbf{B_{9}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (2c) | Ge II |
$\mathbf{B_{10}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (2c) | Ge II |