Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC2_tP10_129_ac_c_bc-001

This structure originally had the label A2BC2_tP10_129_ac_c_bc. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/H0MM
or https://aflow.org/p/A2BC2_tP10_129_ac_c_bc-001
or PDF Version

CaBe$_{2}$Ge$_{2}$ Structure: A2BC2_tP10_129_ac_c_bc-001

Picture of Structure; Click for Big Picture
Prototype Be$_{2}$CaGe$_{2}$
AFLOW prototype label A2BC2_tP10_129_ac_c_bc-001
ICSD 25337
Pearson symbol tP10
Space group number 129
Space group symbol $P4/nmm$
AFLOW prototype command aflow --proto=A2BC2_tP10_129_ac_c_bc-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}$

Other compounds with this structure

BaAu$_{2}$Sn$_{2}$,  BaMg$_{2}$Pb$_{2}$,  BaPd$_{2}$Sb$_{2}$,  BaZn$_{2}$Sn$_{2}$,  CeCu$_{2}$Sn$_{2}$,  CeRh$_{2}$As$_{2}$,  CeRh$_{2}$P$_{2}$,  EuAu$_{2}$Al$_{2}$,  EuPd$_{2}$Sb$_{2}$,  EuPt$_{2}$Ge$_{2}$,  HoPt$_{2}$Si$_{2}$,  LaCu$_{2}$Sn$_{2}$,  LaPt$_{2}$Bi$_{2}$,  LaPt$_{2}$Ge$_{2}$,  LaPt$_{2}$Si$_{2}$,  LaRh$_{2}$As$_{2}$,  LaRh$_{2}$P$_{2}$,  LiPd$_{2}$Bi$_{2}$,  NdRh$_{2}$As$_{2}$,  NdRh$_{2}$P$_{2}$,  PrRh$_{2}$As$_{2}$,  PrRh$_{2}$P$_{2}$,  SrAu$_{2}$Sn$_{2}$,  SrCu$_{2}$Sn$_{2}$,  SrPd$_{2}$Sb$_{2}$,  SrPt$_{2}$As$_{2}$,  ThIr$_{2}$Si$_{2}$,  ThPt$_{2}$Si$_{2}$,  UIr$_{2}$Si$_{2}$,  UPt$_{2}$Si$_{2}$


  • This is a ternary form of the $D1_{3}$ (BaAl$_{4}$) structure. The atomic positions are approximately the same as in the conventional cell of BaAl$_{4}$, but the distribution of the atoms on those sites and the resulting relaxation leads to a different structure.
  • Space group $P4/nmm$ #129 has two settings, but both have the same $z$-axis origin, so either setting will do here. We chose our standard setting 2.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (2a) Be I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ (2a) Be I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Ge I
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Ge I
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2c) Be II
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (2c) Be II
$\mathbf{B_{7}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2c) Ca I
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (2c) Ca I
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (2c) Ge II
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (2c) Ge II

References

  • B. Eisenmann, N. May, W. Müller, and H. Schäfer, Eine neue strukturelle Variante des BaAl$_{4}$-Typs: Der CaBe$_{2}$Ge$_{2}$-Typ, Z. Naturforsch. B 27 (1972), doi:10.1515/znb-1972-1008. 1155-1157.

Prototype Generator

aflow --proto=A2BC2_tP10_129_ac_c_bc --params=$a,c/a,z_{3},z_{4},z_{5}$

Species:

Running:

Output: