AFLOW Prototype: A2B3_tP10_127_g_ah-001
This structure originally had the label A2B3_tP10_127_g_ah. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/6QGS
or
https://aflow.org/p/A2B3_tP10_127_g_ah-001
or
PDF Version
Prototype | Si$_{2}$U$_{3}$ |
AFLOW prototype label | A2B3_tP10_127_g_ah-001 |
Strukturbericht designation | $D5_{a}$ |
ICSD | 73695 |
Pearson symbol | tP10 |
Space group number | 127 |
Space group symbol | $P4/mbm$ |
AFLOW prototype command |
aflow --proto=A2B3_tP10_127_g_ah-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}$ |
Al$_{2}$Th$_{3}$, B$_{2}$Mo$_{3}$, B$_{2}$Nb$_{3}$, B$_{2}$Ta$_{3}$, B$_{2}$V$_{3}$, Be$_{2}$Nb$_{3}$, Be$_{2}$Ta$_{3}$, Ga$_{2}$Nb$_{3}$, Ga$_{2}$Ta$_{3}$, Ga$_{2}$Zr$_{3}$, Ge$_{2}$Th$_{3}$, Pd$_{2}$Dy$_{3}$, Pd$_{2}$Ho$_{3}$, Si$_{2}$Hf$_{3}$, Si$_{2}$Th$_{3}$, Si$_{2}$Zr$_{3}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | U I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (2a) | U I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ | (4g) | Si I |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ | (4g) | Si I |
$\mathbf{B_{5}}$ | = | $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ | = | $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ | (4g) | Si I |
$\mathbf{B_{6}}$ | = | $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ | = | $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ | (4g) | Si I |
$\mathbf{B_{7}}$ | = | $x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | U II |
$\mathbf{B_{8}}$ | = | $- x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | U II |
$\mathbf{B_{9}}$ | = | $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | U II |
$\mathbf{B_{10}}$ | = | $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | U II |