Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B3_tI80_141_ceh_3h-001

This structure originally had the label A2B3_tI80_141_ceh_3h. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/PJGC
or https://aflow.org/p/A2B3_tI80_141_ceh_3h-001
or PDF Version

β-In$_{2}$S$_{3}$ Structure: A2B3_tI80_141_ceh_3h-001

Picture of Structure; Click for Big Picture
Prototype In$_{2}$S$_{3}$
AFLOW prototype label A2B3_tI80_141_ceh_3h-001
ICSD 151644
Pearson symbol tI80
Space group number 141
Space group symbol $I4_1/amd$
AFLOW prototype command aflow --proto=A2B3_tI80_141_ceh_3h-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak y_{6}, \allowbreak z_{6}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (8c) In I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (8c) In I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8c) In I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}c \,\mathbf{\hat{z}}$ (8c) In I
$\mathbf{B_{5}}$ = $\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8e) In II
$\mathbf{B_{6}}$ = $z_{2} \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) In II
$\mathbf{B_{7}}$ = $- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (8e) In II
$\mathbf{B_{8}}$ = $- z_{2} \, \mathbf{a}_{1}- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) In II
$\mathbf{B_{9}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (16h) In III
$\mathbf{B_{10}}$ = $\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (16h) In III
$\mathbf{B_{11}}$ = $z_{3} \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) In III
$\mathbf{B_{12}}$ = $z_{3} \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) In III
$\mathbf{B_{13}}$ = $\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (16h) In III
$\mathbf{B_{14}}$ = $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (16h) In III
$\mathbf{B_{15}}$ = $- z_{3} \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) In III
$\mathbf{B_{16}}$ = $- z_{3} \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) In III
$\mathbf{B_{17}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16h) S I
$\mathbf{B_{18}}$ = $\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16h) S I
$\mathbf{B_{19}}$ = $z_{4} \, \mathbf{a}_{1}+\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) S I
$\mathbf{B_{20}}$ = $z_{4} \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) S I
$\mathbf{B_{21}}$ = $\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16h) S I
$\mathbf{B_{22}}$ = $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16h) S I
$\mathbf{B_{23}}$ = $- z_{4} \, \mathbf{a}_{1}+\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) S I
$\mathbf{B_{24}}$ = $- z_{4} \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) S I
$\mathbf{B_{25}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16h) S II
$\mathbf{B_{26}}$ = $\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16h) S II
$\mathbf{B_{27}}$ = $z_{5} \, \mathbf{a}_{1}+\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) S II
$\mathbf{B_{28}}$ = $z_{5} \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) S II
$\mathbf{B_{29}}$ = $\left(y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16h) S II
$\mathbf{B_{30}}$ = $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16h) S II
$\mathbf{B_{31}}$ = $- z_{5} \, \mathbf{a}_{1}+\left(y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) S II
$\mathbf{B_{32}}$ = $- z_{5} \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) S II
$\mathbf{B_{33}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16h) S III
$\mathbf{B_{34}}$ = $\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16h) S III
$\mathbf{B_{35}}$ = $z_{6} \, \mathbf{a}_{1}+\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) S III
$\mathbf{B_{36}}$ = $z_{6} \, \mathbf{a}_{1}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) S III
$\mathbf{B_{37}}$ = $\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16h) S III
$\mathbf{B_{38}}$ = $- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16h) S III
$\mathbf{B_{39}}$ = $- z_{6} \, \mathbf{a}_{1}+\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) S III
$\mathbf{B_{40}}$ = $- z_{6} \, \mathbf{a}_{1}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) S III

References

  • N. S. Rampersadh, A. M. Venter, and D. G. Billing, Rietveld refinement of In$_2$S$_3$ using neutron and X-ray powder diffraction data, Physica B 350, e383–e385 (2004), doi:10.1016/j.physb.2004.03.102.

Prototype Generator

aflow --proto=A2B3_tI80_141_ceh_3h --params=$a,c/a,z_{2},y_{3},z_{3},y_{4},z_{4},y_{5},z_{5},y_{6},z_{6}$

Species:

Running:

Output: