AFLOW Prototype: A2B3_tI80_141_ceh_3h-001
This structure originally had the label A2B3_tI80_141_ceh_3h. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/PJGC
or
https://aflow.org/p/A2B3_tI80_141_ceh_3h-001
or
PDF Version
Prototype | In$_{2}$S$_{3}$ |
AFLOW prototype label | A2B3_tI80_141_ceh_3h-001 |
ICSD | 151644 |
Pearson symbol | tI80 |
Space group number | 141 |
Space group symbol | $I4_1/amd$ |
AFLOW prototype command |
aflow --proto=A2B3_tI80_141_ceh_3h-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak y_{6}, \allowbreak z_{6}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (8c) | In I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (8c) | In I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8c) | In I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}c \,\mathbf{\hat{z}}$ | (8c) | In I |
$\mathbf{B_{5}}$ | = | $\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (8e) | In II |
$\mathbf{B_{6}}$ | = | $z_{2} \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (8e) | In II |
$\mathbf{B_{7}}$ | = | $- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (8e) | In II |
$\mathbf{B_{8}}$ | = | $- z_{2} \, \mathbf{a}_{1}- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (8e) | In II |
$\mathbf{B_{9}}$ | = | $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16h) | In III |
$\mathbf{B_{10}}$ | = | $\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16h) | In III |
$\mathbf{B_{11}}$ | = | $z_{3} \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ | = | $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | In III |
$\mathbf{B_{12}}$ | = | $z_{3} \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | In III |
$\mathbf{B_{13}}$ | = | $\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (16h) | In III |
$\mathbf{B_{14}}$ | = | $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (16h) | In III |
$\mathbf{B_{15}}$ | = | $- z_{3} \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ | = | $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | In III |
$\mathbf{B_{16}}$ | = | $- z_{3} \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | In III |
$\mathbf{B_{17}}$ | = | $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (16h) | S I |
$\mathbf{B_{18}}$ | = | $\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (16h) | S I |
$\mathbf{B_{19}}$ | = | $z_{4} \, \mathbf{a}_{1}+\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | S I |
$\mathbf{B_{20}}$ | = | $z_{4} \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | S I |
$\mathbf{B_{21}}$ | = | $\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (16h) | S I |
$\mathbf{B_{22}}$ | = | $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (16h) | S I |
$\mathbf{B_{23}}$ | = | $- z_{4} \, \mathbf{a}_{1}+\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | S I |
$\mathbf{B_{24}}$ | = | $- z_{4} \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | S I |
$\mathbf{B_{25}}$ | = | $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ | = | $a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (16h) | S II |
$\mathbf{B_{26}}$ | = | $\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (16h) | S II |
$\mathbf{B_{27}}$ | = | $z_{5} \, \mathbf{a}_{1}+\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ | = | $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | S II |
$\mathbf{B_{28}}$ | = | $z_{5} \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | S II |
$\mathbf{B_{29}}$ | = | $\left(y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (16h) | S II |
$\mathbf{B_{30}}$ | = | $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ | = | $- a y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (16h) | S II |
$\mathbf{B_{31}}$ | = | $- z_{5} \, \mathbf{a}_{1}+\left(y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ | = | $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | S II |
$\mathbf{B_{32}}$ | = | $- z_{5} \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | S II |
$\mathbf{B_{33}}$ | = | $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ | = | $a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (16h) | S III |
$\mathbf{B_{34}}$ | = | $\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (16h) | S III |
$\mathbf{B_{35}}$ | = | $z_{6} \, \mathbf{a}_{1}+\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ | = | $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | S III |
$\mathbf{B_{36}}$ | = | $z_{6} \, \mathbf{a}_{1}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | S III |
$\mathbf{B_{37}}$ | = | $\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (16h) | S III |
$\mathbf{B_{38}}$ | = | $- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ | = | $- a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (16h) | S III |
$\mathbf{B_{39}}$ | = | $- z_{6} \, \mathbf{a}_{1}+\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ | = | $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | S III |
$\mathbf{B_{40}}$ | = | $- z_{6} \, \mathbf{a}_{1}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | S III |