Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A16B13_tI116_141_2hi_a2fh-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/NCQA
or https://aflow.org/p/A16B13_tI116_141_2hi_a2fh-001
or PDF Version

V$_{13}$O$_{16}$ Structure: A16B13_tI116_141_2hi_a2fh-001

Picture of Structure; Click for Big Picture
Prototype O$_{16}$V$_{13}$
AFLOW prototype label A16B13_tI116_141_2hi_a2fh-001
ICSD 77708
Pearson symbol tI116
Space group number 141
Space group symbol $I4_1/amd$
AFLOW prototype command aflow --proto=A16B13_tI116_141_2hi_a2fh-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$

  • There are serveral problems with this structure:
  • It is not clear if (Andersson, 1970) put this in the first (4a site at the origin) or second (inversion site at the origin) setting of space group $I4_{1}/amd$ #141.
  • Furthermore, they give values for x and z for the (16h) positions, even though the standard definition is (0 y z) in both settings.
  • The ICSD entry assumes the first setting, and that the authors meant y rather than x for the first coordinate, but kept x as x for the other Wyckoff positions.
  • We follow this convention, using AFLOW to convert that structure to the standard second setting. The result is shown here.
  • However, (Andersson, 1970) call this structure a distorted rock salt ($B1$) structure with vacancies on the vanadium sites and interstitial vanadium atoms on the (4a) sites, and our structure look nothing like this.
  • Furthermore, the (presumably relaxed) structure found on the Materials Project page (Jain, 2013) has the same symmetry and occupied Wyckoff positions, but is actually much different than this structure.
  • We fill investigate this further. If updates are necessary we will revise this page.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (4a) V I
$\mathbf{B_{2}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (4a) V I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}$ (16f) V II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (16f) V II
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16f) V II
$\mathbf{B_{6}}$ = $- x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{4}c \,\mathbf{\hat{z}}$ (16f) V II
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (16f) V II
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (16f) V II
$\mathbf{B_{9}}$ = $- x_{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16f) V II
$\mathbf{B_{10}}$ = $x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{4}c \,\mathbf{\hat{z}}$ (16f) V II
$\mathbf{B_{11}}$ = $x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}$ (16f) V III
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (16f) V III
$\mathbf{B_{13}}$ = $x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16f) V III
$\mathbf{B_{14}}$ = $- x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{4}c \,\mathbf{\hat{z}}$ (16f) V III
$\mathbf{B_{15}}$ = $- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (16f) V III
$\mathbf{B_{16}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (16f) V III
$\mathbf{B_{17}}$ = $- x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16f) V III
$\mathbf{B_{18}}$ = $x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{4}c \,\mathbf{\hat{z}}$ (16f) V III
$\mathbf{B_{19}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{20}}$ = $\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{21}}$ = $z_{4} \, \mathbf{a}_{1}+\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{22}}$ = $z_{4} \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{23}}$ = $\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{24}}$ = $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{25}}$ = $- z_{4} \, \mathbf{a}_{1}+\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{26}}$ = $- z_{4} \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{27}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16h) O II
$\mathbf{B_{28}}$ = $\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16h) O II
$\mathbf{B_{29}}$ = $z_{5} \, \mathbf{a}_{1}+\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) O II
$\mathbf{B_{30}}$ = $z_{5} \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) O II
$\mathbf{B_{31}}$ = $\left(y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16h) O II
$\mathbf{B_{32}}$ = $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16h) O II
$\mathbf{B_{33}}$ = $- z_{5} \, \mathbf{a}_{1}+\left(y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) O II
$\mathbf{B_{34}}$ = $- z_{5} \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) O II
$\mathbf{B_{35}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16h) V IV
$\mathbf{B_{36}}$ = $\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16h) V IV
$\mathbf{B_{37}}$ = $z_{6} \, \mathbf{a}_{1}+\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) V IV
$\mathbf{B_{38}}$ = $z_{6} \, \mathbf{a}_{1}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) V IV
$\mathbf{B_{39}}$ = $\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16h) V IV
$\mathbf{B_{40}}$ = $- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16h) V IV
$\mathbf{B_{41}}$ = $- z_{6} \, \mathbf{a}_{1}+\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) V IV
$\mathbf{B_{42}}$ = $- z_{6} \, \mathbf{a}_{1}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) V IV
$\mathbf{B_{43}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{44}}$ = $\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{45}}$ = $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{46}}$ = $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{47}}$ = $\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{48}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{49}}$ = $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{50}}$ = $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{51}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{52}}$ = $\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{53}}$ = $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{54}}$ = $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{55}}$ = $\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{56}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{57}}$ = $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32i) O III
$\mathbf{B_{58}}$ = $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32i) O III

References

  • B. Andersson and J. Gj\onnes, Ordered Phases in the Monoxide Region of the Vanadium-Oxygen System, Acta Chem. Scand. 24, 2250–2252 (1970), doi:10.3891/acta.chem.scand.24-2250.

Found in

  • A. Jain, S. Ping, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation}, APL Materials 1, 011002 (2013), doi:10.1063/1.4812323. V$_{13}$O$_{16$, mp-30065.

Prototype Generator

aflow --proto=A16B13_tI116_141_2hi_a2fh --params=$a,c/a,x_{2},x_{3},y_{4},z_{4},y_{5},z_{5},y_{6},z_{6},x_{7},y_{7},z_{7}$

Species:

Running:

Output: