Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A12B7_hP57_174_2j2k4l_ghi3j2k-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/T2R2
or https://aflow.org/p/A12B7_hP57_174_2j2k4l_ghi3j2k-001
or PDF Version

Stützite (Ag$_{5-x}$Te$_{3}$) Structure: A12B7_hP57_174_2j2k4l_ghi3j2k-001

Picture of Structure; Click for Big Picture
Prototype Ag$_{5-x}$Te$_{3}$
AFLOW prototype label A12B7_hP57_174_2j2k4l_ghi3j2k-001
Mineral name stützite
ICSD 263525
Pearson symbol hP57
Space group number 174
Space group symbol $P\overline{6}$
AFLOW prototype command aflow --proto=A12B7_hP57_174_2j2k4l_ghi3j2k-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2g) Te I
$\mathbf{B_{2}}$ = $- z_{1} \, \mathbf{a}_{3}$ = $- c z_{1} \,\mathbf{\hat{z}}$ (2g) Te I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2h) Te II
$\mathbf{B_{4}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (2h) Te II
$\mathbf{B_{5}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2i) Te III
$\mathbf{B_{6}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (2i) Te III
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}$ (3j) Ag I
$\mathbf{B_{8}}$ = $- y_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ (3j) Ag I
$\mathbf{B_{9}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}$ (3j) Ag I
$\mathbf{B_{10}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}$ (3j) Ag II
$\mathbf{B_{11}}$ = $- y_{5} \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{5} - 2 y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}$ (3j) Ag II
$\mathbf{B_{12}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ = $- \frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}$ (3j) Ag II
$\mathbf{B_{13}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}$ (3j) Te IV
$\mathbf{B_{14}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}$ (3j) Te IV
$\mathbf{B_{15}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}$ = $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}$ (3j) Te IV
$\mathbf{B_{16}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}$ (3j) Te V
$\mathbf{B_{17}}$ = $- y_{7} \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{7} - 2 y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}$ (3j) Te V
$\mathbf{B_{18}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}$ = $- \frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}$ (3j) Te V
$\mathbf{B_{19}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}$ (3j) Te VI
$\mathbf{B_{20}}$ = $- y_{8} \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}$ = $\frac{1}{2}a \left(x_{8} - 2 y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}$ (3j) Te VI
$\mathbf{B_{21}}$ = $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}$ = $- \frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}$ (3j) Te VI
$\mathbf{B_{22}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Ag III
$\mathbf{B_{23}}$ = $- y_{9} \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} - 2 y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Ag III
$\mathbf{B_{24}}$ = $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Ag III
$\mathbf{B_{25}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Ag IV
$\mathbf{B_{26}}$ = $- y_{10} \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - 2 y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Ag IV
$\mathbf{B_{27}}$ = $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Ag IV
$\mathbf{B_{28}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Te VII
$\mathbf{B_{29}}$ = $- y_{11} \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - 2 y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Te VII
$\mathbf{B_{30}}$ = $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Te VII
$\mathbf{B_{31}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Te VIII
$\mathbf{B_{32}}$ = $- y_{12} \, \mathbf{a}_{1}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} - 2 y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Te VIII
$\mathbf{B_{33}}$ = $- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Te VIII
$\mathbf{B_{34}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} + y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (6l) Ag V
$\mathbf{B_{35}}$ = $- y_{13} \, \mathbf{a}_{1}+\left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} - 2 y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (6l) Ag V
$\mathbf{B_{36}}$ = $- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{13} - y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (6l) Ag V
$\mathbf{B_{37}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} + y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (6l) Ag V
$\mathbf{B_{38}}$ = $- y_{13} \, \mathbf{a}_{1}+\left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} - 2 y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (6l) Ag V
$\mathbf{B_{39}}$ = $- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{13} - y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (6l) Ag V
$\mathbf{B_{40}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} + y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (6l) Ag VI
$\mathbf{B_{41}}$ = $- y_{14} \, \mathbf{a}_{1}+\left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} - 2 y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (6l) Ag VI
$\mathbf{B_{42}}$ = $- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{14} - y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (6l) Ag VI
$\mathbf{B_{43}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} + y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (6l) Ag VI
$\mathbf{B_{44}}$ = $- y_{14} \, \mathbf{a}_{1}+\left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} - 2 y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (6l) Ag VI
$\mathbf{B_{45}}$ = $- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{14} - y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (6l) Ag VI
$\mathbf{B_{46}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} + y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (6l) Ag VII
$\mathbf{B_{47}}$ = $- y_{15} \, \mathbf{a}_{1}+\left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} - 2 y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (6l) Ag VII
$\mathbf{B_{48}}$ = $- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{15} - y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (6l) Ag VII
$\mathbf{B_{49}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} + y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (6l) Ag VII
$\mathbf{B_{50}}$ = $- y_{15} \, \mathbf{a}_{1}+\left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} - 2 y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (6l) Ag VII
$\mathbf{B_{51}}$ = $- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{15} - y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (6l) Ag VII
$\mathbf{B_{52}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{16} + y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{16} - y_{16}\right) \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (6l) Ag VIII
$\mathbf{B_{53}}$ = $- y_{16} \, \mathbf{a}_{1}+\left(x_{16} - y_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{16} - 2 y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (6l) Ag VIII
$\mathbf{B_{54}}$ = $- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{16} - y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (6l) Ag VIII
$\mathbf{B_{55}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{16} + y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{16} - y_{16}\right) \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (6l) Ag VIII
$\mathbf{B_{56}}$ = $- y_{16} \, \mathbf{a}_{1}+\left(x_{16} - y_{16}\right) \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{16} - 2 y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (6l) Ag VIII
$\mathbf{B_{57}}$ = $- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{16} - y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (6l) Ag VIII

References

  • L. Bindi and F. N. Keutsch, Old defined minerals with complex, still unresolved structures: the case of stützite, Ag$_{5−x}$Te$_{3}$, Z. Krystallogr. 233, 247–253 (2018), doi:10.1515/zkri-2017-2120.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=A12B7_hP57_174_2j2k4l_ghi3j2k --params=$a,c/a,z_{1},z_{2},z_{3},x_{4},y_{4},x_{5},y_{5},x_{6},y_{6},x_{7},y_{7},x_{8},y_{8},x_{9},y_{9},x_{10},y_{10},x_{11},y_{11},x_{12},y_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16}$

Species:

Running:

Output: