AFLOW Prototype: A11B2C2_mP60_4_22a_4a_4a-001
This structure originally had the label A11B2C2_mP60_4_22a_4a_4a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/Z0HK
or
https://aflow.org/p/A11B2C2_mP60_4_22a_4a_4a-001
or
PDF Version
Prototype | O$_{11}$P$_{4}$W$_{4}$ |
AFLOW prototype label | A11B2C2_mP60_4_22a_4a_4a-001 |
ICSD | 36103 |
Pearson symbol | mP60 |
Space group number | 4 |
Space group symbol | $P2_1$ |
AFLOW prototype command |
aflow --proto=A11B2C2_mP60_4_22a_4a_4a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak y_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak y_{21}, \allowbreak z_{21}, \allowbreak x_{22}, \allowbreak y_{22}, \allowbreak z_{22}, \allowbreak x_{23}, \allowbreak y_{23}, \allowbreak z_{23}, \allowbreak x_{24}, \allowbreak y_{24}, \allowbreak z_{24}, \allowbreak x_{25}, \allowbreak y_{25}, \allowbreak z_{25}, \allowbreak x_{26}, \allowbreak y_{26}, \allowbreak z_{26}, \allowbreak x_{27}, \allowbreak y_{27}, \allowbreak z_{27}, \allowbreak x_{28}, \allowbreak y_{28}, \allowbreak z_{28}, \allowbreak x_{29}, \allowbreak y_{29}, \allowbreak z_{29}, \allowbreak x_{30}, \allowbreak y_{30}, \allowbreak z_{30}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ | = | $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O II |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O II |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O III |
$\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O III |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O IV |
$\mathbf{B_{8}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O IV |
$\mathbf{B_{9}}$ | = | $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O V |
$\mathbf{B_{10}}$ | = | $- x_{5} \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O V |
$\mathbf{B_{11}}$ | = | $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VI |
$\mathbf{B_{12}}$ | = | $- x_{6} \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VI |
$\mathbf{B_{13}}$ | = | $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VII |
$\mathbf{B_{14}}$ | = | $- x_{7} \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VII |
$\mathbf{B_{15}}$ | = | $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VIII |
$\mathbf{B_{16}}$ | = | $- x_{8} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O VIII |
$\mathbf{B_{17}}$ | = | $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O IX |
$\mathbf{B_{18}}$ | = | $- x_{9} \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O IX |
$\mathbf{B_{19}}$ | = | $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O X |
$\mathbf{B_{20}}$ | = | $- x_{10} \, \mathbf{a}_{1}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O X |
$\mathbf{B_{21}}$ | = | $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XI |
$\mathbf{B_{22}}$ | = | $- x_{11} \, \mathbf{a}_{1}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- \left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XI |
$\mathbf{B_{23}}$ | = | $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ | = | $\left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XII |
$\mathbf{B_{24}}$ | = | $- x_{12} \, \mathbf{a}_{1}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ | = | $- \left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XII |
$\mathbf{B_{25}}$ | = | $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ | = | $\left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XIII |
$\mathbf{B_{26}}$ | = | $- x_{13} \, \mathbf{a}_{1}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ | = | $- \left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XIII |
$\mathbf{B_{27}}$ | = | $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ | = | $\left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XIV |
$\mathbf{B_{28}}$ | = | $- x_{14} \, \mathbf{a}_{1}+\left(y_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ | = | $- \left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XIV |
$\mathbf{B_{29}}$ | = | $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ | = | $\left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XV |
$\mathbf{B_{30}}$ | = | $- x_{15} \, \mathbf{a}_{1}+\left(y_{15} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ | = | $- \left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{15} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XV |
$\mathbf{B_{31}}$ | = | $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ | = | $\left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}+c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XVI |
$\mathbf{B_{32}}$ | = | $- x_{16} \, \mathbf{a}_{1}+\left(y_{16} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ | = | $- \left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{16} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XVI |
$\mathbf{B_{33}}$ | = | $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ | = | $\left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}+c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XVII |
$\mathbf{B_{34}}$ | = | $- x_{17} \, \mathbf{a}_{1}+\left(y_{17} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ | = | $- \left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{17} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XVII |
$\mathbf{B_{35}}$ | = | $x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ | = | $\left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}+c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XVIII |
$\mathbf{B_{36}}$ | = | $- x_{18} \, \mathbf{a}_{1}+\left(y_{18} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ | = | $- \left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{18} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XVIII |
$\mathbf{B_{37}}$ | = | $x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ | = | $\left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}+c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XIX |
$\mathbf{B_{38}}$ | = | $- x_{19} \, \mathbf{a}_{1}+\left(y_{19} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ | = | $- \left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{19} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XIX |
$\mathbf{B_{39}}$ | = | $x_{20} \, \mathbf{a}_{1}+y_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ | = | $\left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{20} \,\mathbf{\hat{y}}+c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XX |
$\mathbf{B_{40}}$ | = | $- x_{20} \, \mathbf{a}_{1}+\left(y_{20} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ | = | $- \left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{20} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XX |
$\mathbf{B_{41}}$ | = | $x_{21} \, \mathbf{a}_{1}+y_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ | = | $\left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{21} \,\mathbf{\hat{y}}+c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXI |
$\mathbf{B_{42}}$ | = | $- x_{21} \, \mathbf{a}_{1}+\left(y_{21} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ | = | $- \left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{21} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXI |
$\mathbf{B_{43}}$ | = | $x_{22} \, \mathbf{a}_{1}+y_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ | = | $\left(a x_{22} + c z_{22} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{22} \,\mathbf{\hat{y}}+c z_{22} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXII |
$\mathbf{B_{44}}$ | = | $- x_{22} \, \mathbf{a}_{1}+\left(y_{22} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ | = | $- \left(a x_{22} + c z_{22} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{22} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{22} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | O XXII |
$\mathbf{B_{45}}$ | = | $x_{23} \, \mathbf{a}_{1}+y_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ | = | $\left(a x_{23} + c z_{23} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{23} \,\mathbf{\hat{y}}+c z_{23} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | P I |
$\mathbf{B_{46}}$ | = | $- x_{23} \, \mathbf{a}_{1}+\left(y_{23} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ | = | $- \left(a x_{23} + c z_{23} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{23} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{23} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | P I |
$\mathbf{B_{47}}$ | = | $x_{24} \, \mathbf{a}_{1}+y_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ | = | $\left(a x_{24} + c z_{24} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{24} \,\mathbf{\hat{y}}+c z_{24} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | P II |
$\mathbf{B_{48}}$ | = | $- x_{24} \, \mathbf{a}_{1}+\left(y_{24} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ | = | $- \left(a x_{24} + c z_{24} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{24} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{24} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | P II |
$\mathbf{B_{49}}$ | = | $x_{25} \, \mathbf{a}_{1}+y_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ | = | $\left(a x_{25} + c z_{25} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{25} \,\mathbf{\hat{y}}+c z_{25} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | P III |
$\mathbf{B_{50}}$ | = | $- x_{25} \, \mathbf{a}_{1}+\left(y_{25} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{25} \, \mathbf{a}_{3}$ | = | $- \left(a x_{25} + c z_{25} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{25} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{25} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | P III |
$\mathbf{B_{51}}$ | = | $x_{26} \, \mathbf{a}_{1}+y_{26} \, \mathbf{a}_{2}+z_{26} \, \mathbf{a}_{3}$ | = | $\left(a x_{26} + c z_{26} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{26} \,\mathbf{\hat{y}}+c z_{26} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | P IV |
$\mathbf{B_{52}}$ | = | $- x_{26} \, \mathbf{a}_{1}+\left(y_{26} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{26} \, \mathbf{a}_{3}$ | = | $- \left(a x_{26} + c z_{26} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{26} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{26} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | P IV |
$\mathbf{B_{53}}$ | = | $x_{27} \, \mathbf{a}_{1}+y_{27} \, \mathbf{a}_{2}+z_{27} \, \mathbf{a}_{3}$ | = | $\left(a x_{27} + c z_{27} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{27} \,\mathbf{\hat{y}}+c z_{27} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | W I |
$\mathbf{B_{54}}$ | = | $- x_{27} \, \mathbf{a}_{1}+\left(y_{27} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{27} \, \mathbf{a}_{3}$ | = | $- \left(a x_{27} + c z_{27} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{27} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{27} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | W I |
$\mathbf{B_{55}}$ | = | $x_{28} \, \mathbf{a}_{1}+y_{28} \, \mathbf{a}_{2}+z_{28} \, \mathbf{a}_{3}$ | = | $\left(a x_{28} + c z_{28} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{28} \,\mathbf{\hat{y}}+c z_{28} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | W II |
$\mathbf{B_{56}}$ | = | $- x_{28} \, \mathbf{a}_{1}+\left(y_{28} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{28} \, \mathbf{a}_{3}$ | = | $- \left(a x_{28} + c z_{28} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{28} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{28} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | W II |
$\mathbf{B_{57}}$ | = | $x_{29} \, \mathbf{a}_{1}+y_{29} \, \mathbf{a}_{2}+z_{29} \, \mathbf{a}_{3}$ | = | $\left(a x_{29} + c z_{29} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{29} \,\mathbf{\hat{y}}+c z_{29} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | W III |
$\mathbf{B_{58}}$ | = | $- x_{29} \, \mathbf{a}_{1}+\left(y_{29} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{29} \, \mathbf{a}_{3}$ | = | $- \left(a x_{29} + c z_{29} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{29} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{29} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | W III |
$\mathbf{B_{59}}$ | = | $x_{30} \, \mathbf{a}_{1}+y_{30} \, \mathbf{a}_{2}+z_{30} \, \mathbf{a}_{3}$ | = | $\left(a x_{30} + c z_{30} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{30} \,\mathbf{\hat{y}}+c z_{30} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | W IV |
$\mathbf{B_{60}}$ | = | $- x_{30} \, \mathbf{a}_{1}+\left(y_{30} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{30} \, \mathbf{a}_{3}$ | = | $- \left(a x_{30} + c z_{30} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{30} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{30} \sin{\beta} \,\mathbf{\hat{z}}$ | (2a) | W IV |