Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_hP18_180_fi_bd

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Mg2Ni ($C_{a}$) Structure: A2B_hP18_180_fi_bd

Picture of Structure; Click for Big Picture
Prototype : Mg2Ni
AFLOW prototype label : A2B_hP18_180_fi_bd
Strukturbericht designation : $C_{a}$
Pearson symbol : hP18
Space group number : 180
Space group symbol : $\text{P6}_{2}\text{22}$
AFLOW prototype command : aflow --proto=A2B_hP18_180_fi_bd
--params=
$a$,$c/a$,$z_{3}$,$x_{4}$


Other compounds with this structure

  • CuMg4Ni

Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt{3}}{2} \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2} \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}}\\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1}& = &\frac12 \, \mathbf{a}_{3}& = &\frac12 \, c \, \mathbf{\hat{z}}& \left(3b\right) & \text{Ni I} \\ \mathbf{B}_{2}& = &\frac16 \, \mathbf{a}_{3}& = &\frac16 \, c \, \mathbf{\hat{z}}& \left(3b\right) & \text{Ni I} \\ \mathbf{B}_{3}& = &\frac56 \, \mathbf{a}_{3}& = &\frac56 \, c \, \mathbf{\hat{z}}& \left(3b\right) & \text{Ni I} \\ \mathbf{B}_{4}& = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{x}}- \frac{\sqrt3}4 \, a \, \mathbf{\hat{y}}+ \frac12 \, c \, \mathbf{\hat{z}}& \left(3d\right) & \text{Ni II} \\ \mathbf{B}_{5}& = &\frac12 \, \mathbf{a}_{2}+ \frac16 \, \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{x}}+ \frac{\sqrt3}4 \, a \, \mathbf{\hat{y}}+ \frac16 \, c \, \mathbf{\hat{z}}& \left(3d\right) & \text{Ni II} \\ \mathbf{B}_{6}& = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}+ \frac56 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac56 \, c \, \mathbf{\hat{z}}& \left(3d\right) & \text{Ni II} \\ \mathbf{B}_{7}& = &\frac12 \, \mathbf{a}_{1}+ z_{3} \, \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{x}}- \frac{\sqrt3}4 \, a \, \mathbf{\hat{y}}+ z_{3} \, c \, \mathbf{\hat{z}}& \left(6f\right) & \text{Mg I} \\ \mathbf{B}_{8}& = &\frac12 \, \mathbf{a}_{2}+ \left(\frac23 + z_{3}\right) \, \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{x}}+ \frac{\sqrt3}4 \, a \, \mathbf{\hat{y}}+ \left(\frac23 + z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(6f\right) & \text{Mg I} \\ \mathbf{B}_{9}& = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}+ \left(\frac13 + z_{3}\right) \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \left(\frac13 + z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(6f\right) & \text{Mg I} \\ \mathbf{B}_{10}& = &\frac12 \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{x}}- \frac{\sqrt3}4 \, a \, \mathbf{\hat{y}}- z_{3} \, c \, \mathbf{\hat{z}}& \left(6f\right) & \text{Mg I} \\ \mathbf{B}_{11}& = &\frac12 \, \mathbf{a}_{2}+ \left(\frac23 - z_{3}\right) \, \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{x}}+ \frac{\sqrt3}4 \, a \, \mathbf{\hat{y}}+ \left(\frac23 - z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(6f\right) & \text{Mg I} \\ \mathbf{B}_{12}& = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}+ \left(\frac13 - z_{3}\right) \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \left(\frac13 - z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(6f\right) & \text{Mg I} \\ \mathbf{B}_{13}& = &x_{4} \, \mathbf{a}_{1}+ 2 x_{4} \, \mathbf{a}_{2}& = &\frac32 \, x_{4} \, a \, \mathbf{\hat{x}}+ \frac{\sqrt3}2 \, x_{4} \, a \, \mathbf{\hat{y}}& \left(6i\right) & \text{Mg II} \\ \mathbf{B}_{14}& = &- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+ \frac23 \, \mathbf{a}_{3}& = &- \frac32 \, x_{4} \, a \, \mathbf{\hat{x}}+ \frac{\sqrt3}2 \, x_{4} \, a \, \mathbf{\hat{y}}+ \frac23 \, c \, \mathbf{\hat{z}}& \left(6i\right) & \text{Mg II} \\ \mathbf{B}_{15}& = &x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+ \frac13 \, \mathbf{a}_{3}& = &- \sqrt3 \, x_{4} \, a \, \mathbf{\hat{y}}+ \frac13 \, c \, \mathbf{\hat{z}}& \left(6i\right) & \text{Mg II} \\ \mathbf{B}_{16}& = &- x_{4} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}& = &- \frac32 \, x_{4} \, a \, \mathbf{\hat{x}}- \frac{\sqrt3}2 \, x_{4} \, a \, \mathbf{\hat{y}}& \left(6i\right) & \text{Mg II} \\ \mathbf{B}_{17}& = &2 x_{4} \, \mathbf{a}_{1}+ x_{4} \, \mathbf{a}_{2}+ \frac23 \, \mathbf{a}_{3}& = &\frac32 \, x_{4} \, a \, \mathbf{\hat{x}}- \frac{\sqrt3}2 \, x_{4} \, a \, \mathbf{\hat{y}}+ \frac23 \, c \, \mathbf{\hat{z}}& \left(6i\right) & \text{Mg II} \\ \mathbf{B}_{18}& = &- x_{4} \, \mathbf{a}_{1}+ x_{4} \, \mathbf{a}_{2}+ \frac13 \, \mathbf{a}_{3}& = &\sqrt3 \, x_{4} \, a \, \mathbf{\hat{y}}+ \frac13 \, c \, \mathbf{\hat{z}}& \left(6i\right) & \text{Mg II} \\ \end{array} \]

References

  • J. Schefer, P. Fischer, W. Hälg, F. Stucki, L. Schlapbach, J. J. Didisheim, K. Yvon, and A. F. Andresen, New structure results for hydrides and deuterides of the hydrogen storage material Mg2Ni, J. Less–Common Met. 74, 65–73 (1980), doi:10.1016/0022-5088(80)90074-0.

Found in

  • P. Villars, Material Phases Data System ((MPDS), CH–6354 Vitznau, Switzerland, 2014). Accessed through the Springer Materials site.

Geometry files


Prototype Generator

aflow --proto=A2B_hP18_180_fi_bd --params=

Species:

Running:

Output: