Wiki

Aconvasp Online

how to cite aconvasp and aconvasp-online:

If you download or use our management tools (aflow/aconvasp), you should say something like "calculations and post-processing are performed with the high-throughout AFLOW framework [REF]", where [REF] is:
[5] S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. Mehl, H. T. Stokes, D. O. Demchenko, and D. Morgan, AFLOW: an automatic framework for high-throughput materials discovery , Comp. Mat. Sci. 58 , 218 (2012) [Link] .

Curtarolo Group Duke University
ACONVASP assists you with the poscar manipulation.
A few easy tasks of aconvasp can be reproduced by this online interface.
HELP

Aflow Documentation

Aflow documentation can be be found in our group managed AFLOW WIKI here

    General Info

    aflow/aconvasp Version aflow Help aconvasp Help apennsy Help

    Output Type

    VASP Output [NEW] Quantum Espresso Output

    Structure File Manipulation

    Normal Primitive (fast)
    Standard Primitive (slow) [DOI: 10.1016/j.commatsci.2010.05.010]
    Standard Conventional (slow) [DOI: 10.1016/j.commatsci.2010.05.010]
    Minkowski lattice reduction Niggli Standardized form
    WYCKOFF-CAR/ABCCAR to POSCAR (read aconvasp.pdf for definition of wyckcar/abccar)
    POSCAR to ABCCAR
    Bring atoms in the cell Cartesian coordinates Fractional coordinates
    Data (a,b,c,alpha,beta,gamma) Extended Data (a,b,c,alpha,beta,gamma lattices, point group)

    Symmetry

    Lattice Type of the crystal Lattice Type of the lattice Pearson symbol
    Space Group (PLATON) Space Group (FINDSYM) FINDSYM output
    Point Group Lattice Matrices Point Group Crystal Matrices
    Factor Group Crystal Matrices and Translations Identical atoms Sites Symmetries
    Kpath in the reciprocal space for band structure calculations [DOI: j.commatsci.2010.05.010]
        with respect to the reciprocal vectors generated from the standard primitive lattice vectors.
    Interstitial Positions (online up to 8 atoms/cell) [DOI: 10.1103/PhysRevB.79.134203]

    Partial Occupation tools

    [NEW] Lattice-compatible Hermite normal form ( HNF ) supercells up to .
    If a negative number n is given, all the supercells with HNF from 2 to -n will be generated. The online version supports -10 ≤ n ≤ 10.
    [NEW] Generate HNF size to get the concentration spread of partial occupation within the tolerance from the input PARTCAR .

    Library Data

    List of prototypes of AFLOW
    Generate AFLOW prototype:  (e.g., enter number between 1-661)
    Search prototypes of AFLOW: 
        Search by space group (e.g., #225), Pearson symbol (e.g., oP4), chemical prototype (e.g., Al3Ti)

    Enter the prototype and species (in alphabetic order) : and
    Generate AFLOW prototype with species
    Generate AFLOW.IN input file for prototype with species

    Numerical Functions

    Compute KPOINTS with KPPRA= (>1)
    Computer KPOINTS with dK=( <1.0)

    Miller Index Functions

    Enter the Miller indices h: k: l: Input values may be integer, fraction (e.g., 2/3), or decimal (e.g., 0.75)
    Distance between Miller planes. POSCAR should be in conventional form.
Input POSCAR here:
Input PARTCAR here:

(Up to 50 atom cells are supported)




Example of WYCKOFF-CAR (cut/paste it, then "wyckoff to poscar", then convert to standard primitive for the RHL cell, or standard conventional for the HEX cell):

LiB_MS1  R-3m #166 hR4 - PRB 73 180501(R) (2006) 
1.0
3.058 3.058 16.06 90 90 120 166 2 
1 1
Direct
0.0 0.0 0.085833333333 Li  M(6c)
0.0 0.0 0.333333333333 B   B(6c)
        

Example of PARTCAR

PARTCAR of Ag8.8Cd4Zr3.2 -191.600  0.02
// POSCAR scale and tolerance if tolerance <0 5.76 5.76 5.76 90 90 90
// usual a1,a2,a2 or ABCCAR or WYCKCAR definitions 8*1+1*0.7333 4*1 1*0.266+3*1
// needs keywords * and + to determine the species and the occupations Direct Partial
// you need to specify Partial, the "P" is mandatory
0.25  0.25  0.25  Ag
0.75  0.75  0.25  Ag
0.75  0.25  0.75  Ag
0.25  0.75  0.75  Ag
0.25  0.25  0.75  Ag
0.75  0.75  0.75  Ag
0.25  0.75  0.25  Ag
0.75  0.25  0.25  Ag
0.50  0.50  0.50  Ag
0.00  0.00  0.00  Cd
0.00  0.50  0.50  Cd
0.50  0.00  0.50  Cd
0.50  0.50  0.00  Cd
0.50  0.50  0.50  Zr
0.50  0.00  0.00  Zr
0.00  0.50  0.00  Zr
0.00  0.00  0.50  Zr 

Library of online structural ab initio calculations (308975 Calculations)

how to cite the binary alloy database:

If you download and/or use thermodynamic data from this website, you have to cite:
[6] S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy, AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations , Comp. Mat. Sci. 58 , 227 (2012) [Link] .
[7] S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. Mehl, H. T. Stokes, D. O. Demchenko, and D. Morgan, AFLOW: an automatic framework for high-throughput materials discovery , Comp. Mat. Sci. 58 , 218 (2012) [Link] .
in addition to the reference(s) specified inside the "raw" data downloaded and listed below (check the lines REFERENCE). If no REFERENCE is provided, data must be considered incomplete or not accurate and it shall be used with extreme care.



Alloys are AaBb. (last update: 2014-02-20)
all  bcc  fcc  hcp  phase-diagram 

   
Ag Ag
Al Al
As As
Au Au
Bi Bi
Br Br
Ca Ca
Cd Cd
Cl Cl
Co Co
Cr Cr
Cu Cu
Fe Fe
Ga Ga
Ge Ge
Hf Hf
Hg Hg
In In
Ir Ir
La La
Li Li
Mg Mg
Mn Mn
Mo Mo
Na Na
Nb Nb
Ni Ni
Os Os
P  P
Pb Pb
Pd Pd
Pt Pt
Rb Rb
Re Re
Rh Rh
Ru Ru
Sb Sb
Sc Sc
Se Se
Si Si
Sn Sn
Sr Sr
Ta Ta
Tc Tc
Te Te
Ti Ti
Tl Tl
V  V
W  W
Y  Y
Zn Zn
Zr Zr


(be patient)



References
  1 S. Curtarolo, A. N. Kolmogorov, and F. H. Cocks, High-throughput ab initio analysis of the Bi-In, Bi-Mg, Bi-Sb, In-Mg, In-Sb, and Mg-Sb systems, Calphad 29, 155-161 (2005).
  2 S. Curtarolo, D. Morgan, and G. Ceder, Accuracy of ab-initio methods in predicting the crystal structures of metals: review of 80 binary alloys, Calphad 29, 163-211 (2005).
  3 O. Levy, G. L. W. Hart, and S. Curtarolo, Uncovering compounds by synergy of cluster expansion and high-throughput methods, J. Am. Chem. Soc. 132, 4830-4833 (2010).
  4 R. V. Chepulskii, W. H. Butler, A. van de Walle, and S. Curtarolo, Surface segregation in nanoparticles from first principles: the case of FePt, Scripta Materialia 62, 179-182 (2010).
  5 O. Levy, G. L. W. Hart, and S. Curtarolo, Hafnium binary alloys from experiments and first principles, Acta Mat. 58, 2887-2897 (2010).
  6 O. Levy, R. V. Chepulskii, G. L. W. Hart, and S. Curtarolo, The new face of rhodium alloys: revealing ordered structures from first principles, J. Am. Chem. Soc. 132, 833-837 (2010).
  7 R. H. Taylor, S. Curtarolo, and G. L. W. Hart, Guiding the experimental discovery of magnesium alloys, Phys. Rev. B 84, 084101 (2011).
  8 R. H. Taylor, S. Curtarolo, and G. L. W. Hart, Ordered Magnesium-Lithium Alloys: First-Principles Predictions, Phys. Rev. B 81, 024112 (2010).
  9 R. H. Taylor, S. Curtarolo, and G. L. W. Hart, Predictions of the Pt8Ti phase in unexpected systems, J. Am. Chem. Soc. 132, 6851-6854 (2010).
10 O. Levy, G. L. W. Hart, and S. Curtarolo, Structure maps for hcp metals from first principles calculations, Phys. Rev. B 81, 174106 (2010).
11 M. Mehl, G. L. W. Hart, and S. Curtarolo, Density Functional Study of the L10-alpha-IrV Transition in IrV and RhV, Journal of Alloys and Compounds 509, 560-567 (2011).
12 R. V. Chepulskii and S. Curtarolo, Ab Initio Insights on the Shapes of Platinum Nanocatalysts, ACS-NANO 5(1), 247-254 (2011).
13 R. V. Chepulskii and S. Curtarolo, First principles study of Ag, Au and Cu Surface Segregation in FePt-L10, Appl. Phys. Lett. 97, 221908 (2010).
14 O. Levy, M. Jahnatek, R. V. Chepulskii, G. L. W. Hart, and S. Curtarolo, Ordered Structures in Rhenium Binary Alloys from First-Principles Calculations, J. Am. Chem. Soc. 133(1), 158-163 (2011).
15 S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. Mehl, H. T. Stokes, D. O. Demchenko, and D. Morgan, AFLOW: an automatic framework for high-throughput materials discovery, Comp. Mat. Sci. 58, 218-226 (2012).
16 R. V. Chepulskii and S. Curtarolo, Revealing low-temperature atomic ordering in bulk Co-Pt with the high-throughput ab initio method, Appl. Phys. Lett. 99, 261902 (2011).
17 M. Jahnatek, O. Levy, G. L. W. Hart, L. J. Nelson, R. V. Chepulskii, J. Xue, and S. Curtarolo, Ordered phases in ruthenium binary alloys from high-throughput first principles calculations, Phys. Rev. B 84, 214110 (2011).
18 O. Levy, J. Xue, S. Wang, G. L. W. Hart, and S. Curtarolo, Stable ordered structures of binary technetium alloys from first principles, Phys. Rev. B 85, 012201 (BR) (2012).
19 L. J. Nelson, G. L. W. Hart, and S. Curtarolo, Ground state characterizations of systems predicted to exhibit L11 or L13 crystal structures, Phys. Rev. B 85, 054203 (2012).
20 J. Bloch, O. Levy, B. Pejova, J. Jacob, S. Curtarolo, and B. Hjörvarsson, Prediction and hydrogen-acceleration of ordering in iron-vanadium alloys, Phys. Rev. Lett. 108, 215503 (2012).
21 S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno Nardelli, N. Mingo, and O. Levy, AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations, Comp. Mat. Sci. 58, 227-235 (2012).
22 W.-C. Wen, R. V. Chepulskii, L.-W. Wang, S. Curtarolo, and C.-H. Lai, Accelerating disorder-order transitions of FePt by preforming a metastable AgPt phase, Acta Mat. 60(20), 7258-7264 (2012).
23 S. Curtarolo, G. L. W. Hart, M. Buongiorno Nardelli, N. Mingo, S. Sanvito, and O. Levy, The high-throughput highway to computational materials design, Nature Materials 12(3), 191-201 (2013).
24 G. L. W. Hart, S. Curtarolo, T.B. Massalski, and O. Levy, Comprehensive Search for New Phases and Compounds in Binary Alloy Systems Based on Platinum-Group Metals, Using a Computational First-Principles Approach, Phys. Rev. X 3, 041035 (2013).


Acknowledgements

Research sponsors
Computational resources sponsors
Database resources sponsors
DUKE ONR NSF DHS BYU TeraGrid ornl swt